1
|
Godinez C, Campilan B, Schroeder C, Arditi J, Michles MJ, Herrera BC, Gallagher K, Robinson TA, Owens T, Gokaslan ZL, Sullivan P, Martinez-Moreno M. Combinatorial therapies for epigenetic, immunotherapeutic, and genetic targeting of chordoma. J Neurooncol 2025; 172:307-315. [PMID: 39738914 DOI: 10.1007/s11060-024-04920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE Chordoma, a rare malignancy of the axial skeleton and skull base, presents significant therapeutic challenges due to the high rates of tumor recurrence and resistance. While surgical resection and radiation therapy remain the gold standard of treatment, the lack of additional treatment options necessitates the exploration of novel therapies. Combinatorial therapies hold significant potential in shaping patient prognosis. By targeting the immunotherapeutic, epigenetic, and genetic landscapes of chordoma, these methods enable the more effective and personalized management of the diverse molecular mechanisms driving chordoma growth and resistance. METHODS To elucidate such potential, we conducted a literature review of all published articles on the usage of immunotherapeutic, epigenetic, and genetic approaches for chordoma treatment from 2014 to 2024. RESULTS Eighty-one papers were excluded based on our inclusion criteria. From the remaining thirty-nine publications, we found evidence supporting the efficacy of immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T-cell therapies, and monoclonal antibodies; the roles of DNA methylation patterns, histone modification pathways, and miRNA regulation; and the contribution of cancer stem-like cells (CSCs) to chordoma progression. CONCLUSION Our findings underscore the importance of a multidirectional approach in chordoma treatment throughout the disease progression to reduce morbidity and improve patient outcomes despite the heterogeneity of chordoma.
Collapse
Affiliation(s)
- Christian Godinez
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Beatrice Campilan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Christian Schroeder
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Jonathan Arditi
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Madison J Michles
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Benjamín Córdova Herrera
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Kaylee Gallagher
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Tati-Anna Robinson
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Tyler Owens
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patricia Sullivan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA.
| |
Collapse
|
2
|
Yan X, Li Z, Tian Q, Zhang Y. Metastatic sacral chordoma to the liver: A case report. Asian J Surg 2024; 47:3193-3194. [PMID: 38490868 DOI: 10.1016/j.asjsur.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Xiaodong Yan
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhongmin Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
3
|
Zhao C, Tan T, Zhang E, Wang T, Gong H, Jia Q, Liu T, Yang X, Zhao J, Wu Z, Wei H, Xiao J, Yang C. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol 2022; 12:1029670. [PMID: 36465398 PMCID: PMC9708744 DOI: 10.3389/fonc.2022.1029670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 09/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and the clivus/skull base. Surgical resection is the treatment of choice for chordoma, but the local recurrence rate is high with unsatisfactory prognosis. Compared with other common tumors, there is not much research and individualized treatment for chordoma, partly due to the rarity of the disease and the lack of appropriate disease models, which delay the discovery of therapeutic strategies. Recent advances in modern techniques have enabled gaining a better understanding of a number of rare diseases, including chordoma. Since the beginning of the 21st century, various chordoma cell lines and animal models have been reported, which have partially revealed the intrinsic mechanisms of tumor initiation and progression with the use of next-generation sequencing (NGS) techniques. In this study, we performed a systematic overview of the chordoma models and related sequencing studies in a chronological manner, from the first patient-derived chordoma cell line (U-CH1) to diverse preclinical models such as the patient-derived organoid-based xenograft (PDX) and patient-derived organoid (PDO) models. The use of modern sequencing techniques has discovered mutations and expression signatures that are considered potential treatment targets, such as the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs). Moreover, computational and bioinformatics techniques have made drug repositioning/repurposing and individualized high-throughput drug screening available. These advantages facilitate the research and development of comprehensive and personalized treatment strategies for indicated patients and will dramatically improve their prognoses in the near feature.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tao Tan
- Department of Orthopedics, 905 Hospital of People’s Liberation Army Navy, Shanghai, China
| | - E. Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haiyi Gong
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Qi Jia
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tielong Liu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Zhipeng Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Cheng Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
4
|
Passeri T, Dahmani A, Masliah-Planchon J, Naguez A, Michou M, El Botty R, Vacher S, Bouarich R, Nicolas A, Polivka M, Franck C, Schnitzler A, Némati F, Roman-Roman S, Bourdeaut F, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. Dramatic In Vivo Efficacy of the EZH2-Inhibitor Tazemetostat in PBRM1-Mutated Human Chordoma Xenograft. Cancers (Basel) 2022; 14:cancers14061486. [PMID: 35326637 PMCID: PMC8946089 DOI: 10.3390/cancers14061486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chordomas are rare bone tumors characterized by a high recurrence rate. Presently, no medical treatment is available for advanced diseases due to the lack of molecular data and preclinical models. The current study showed the establishment and characterization of the largest panel chordoma xenografts, allowing pharmacological studies. In one PBRM1-mutated model, we demonstrated a strong therapeutic efficacy of the EZH2-inhibitor tazemetostat, encouraging further research on EZH2-inhibitors in chordomas. Abstract Chordomas are rare neoplasms characterized by a high recurrence rate and a poor long-term prognosis. Considering their chemo-/radio-resistance, alternative treatment strategies are strongly required, but their development is limited by the paucity of relevant preclinical models. Mutations affecting genes of the SWI/SNF complexes are frequently found in chordomas, suggesting a potential therapeutic effect of epigenetic regulators in this pathology. Twelve PDX models were established and characterized on histological and biomolecular features. Patients whose tumors were able to grow into mice had a statistically significant lower progression-free survival than those whose tumors did not grow after in vivo transplantation (p = 0.007). All PDXs maintained the same histopathological features as patients’ tumors. Homozygous deletions of CDKN2A/2B (58.3%) and PBRM1 (25%) variants were the most common genomic alterations found. In the tazemetostat treated PDX model harboring a PBRM1 variant, an overall survival of 100% was observed. Our panel of chordoma PDXs represents a useful preclinical tool for both pharmacologic and biological assessments. The first demonstration of a high antitumor activity of tazemetostat in a PDX model harboring a PBRM1 variant supports further evaluation for EZH2-inhibitors in this subgroup of chordomas.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Adnan Naguez
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Marine Michou
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Rachida Bouarich
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - André Nicolas
- Department of Tumor Biology, Institut Curie, 75005 Paris, France;
| | - Marc Polivka
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Coralie Franck
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Fariba Némati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, 75005 Paris, France;
| | - Franck Bourdeaut
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Hamid Mammar
- Proton Therapy Center, Institut Curie, 91400 Orsay, France;
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Medical Oncology, Institut Curie, 75005 Paris, France
- Correspondence: ; Tel.: +33-1-56-24-62-40
| |
Collapse
|
5
|
Al Shihabi A, Davarifar A, Nguyen HTL, Tavanaie N, Nelson SD, Yanagawa J, Federman N, Bernthal N, Hornicek F, Soragni A. Personalized chordoma organoids for drug discovery studies. SCIENCE ADVANCES 2022; 8:eabl3674. [PMID: 35171675 PMCID: PMC8849332 DOI: 10.1126/sciadv.abl3674] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D. Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Characterization of a Clival Chordoma Xenograft Model Reveals Tumor Genomic Instability. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2902-2911. [DOI: 10.1016/j.ajpath.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
|
7
|
Magnaghi P, Salom B, Cozzi L, Amboldi N, Ballinari D, Tamborini E, Gasparri F, Montagnoli A, Raddrizzani L, Somaschini A, Bosotti R, Orrenius C, Bozzi F, Pilotti S, Galvani A, Sommer J, Stacchiotti S, Isacchi A. Afatinib Is a New Therapeutic Approach in Chordoma with a Unique Ability to Target EGFR and Brachyury. Mol Cancer Ther 2017; 17:603-613. [DOI: 10.1158/1535-7163.mct-17-0324] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
|
8
|
Yamaguchi T, Imada H, Iida S, Szuhai K. Notochordal Tumors: An Update on Molecular Pathology with Therapeutic Implications. Surg Pathol Clin 2017; 10:637-656. [PMID: 28797506 DOI: 10.1016/j.path.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent molecular investigations of chordoma show common expression of various receptor tyrosine kinases and activation of downstream signaling pathways contributing to tumor growth and progression. The transcription factor brachyury (also known as T) is important in notochord differentiation, and germline duplication of the gene is often found in familial chordomas. Nuclear expression of brachyury is consistent in chordoma and in benign notochordal cell tumor. Based on the molecular evidence, targeting of several kinds of molecular agents has been attempted for the treatment of uncontrolled chordomas and achieved partial response or stable condition in many cases.
Collapse
Affiliation(s)
- Takehiko Yamaguchi
- Department of Pathology, Koshigaya Hospital, Dokkyo Medical University, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan.
| | - Hiroki Imada
- Department of Pathology, Koshigaya Hospital, Dokkyo Medical University, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan
| | - Shun Iida
- Department of Pathology, Koshigaya Hospital, Dokkyo Medical University, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box: 9600, Post Zone: R-01-P, Leiden 2300 RC, The Netherlands
| |
Collapse
|
9
|
Alholle A, Brini AT, Bauer J, Gharanei S, Niada S, Slater A, Gentle D, Maher ER, Jeys L, Grimer R, Sumathi VP, Latif F. Genome-wide DNA methylation profiling of recurrent and non-recurrent chordomas. Epigenetics 2015; 10:213-20. [PMID: 25621392 DOI: 10.1080/15592294.2015.1006497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chordomas are an aggressive rare type of malignant bone tumors arising from the remnant of the notochord. Chordomas occur mainly in vertebral bones and account for 1-4% of malignant bone tumors. Management and treatment of chordomas are difficult as they are resistant to conventional chemotherapy; therefore, they are mainly treated with surgery and radiation therapy. In this study, we performed DNA methylation profiling of 26 chordomas and normal nucleus pulposus samples plus UCH-1 chordoma cell line using the Illumina Infinium HumanMethylation450 BeadChips. Combined bisulfite restriction analysis and bisulfite sequencing was used to confirm the methylation data. Gene expression was analyzed using RT-PCR before and after 5-aza-2'-deoxycytidine (5-azaDC) treatment of chordoma cell lines. Analysis of the HumanMethylation450 BeadChip data led to the identification of 8,819 loci (2.9%) that were significantly differentially methylated (>0.2 average β-value difference) between chordomas and nucleus pulposus samples (adjusted P < 0.05). Among these, 5,868 probes (66.5%) were hypomethylated, compared to 2,951 (33.5%) loci that were hypermethylated in chordomas compared to controls. From the 2,951 differentially hypermethylated probes, 33.3% were localized in the promoter region (982 probes) and, among these, 104 probes showed cancer-specific hypermethylation. Ingenuity Pathway Analysis indicates that the cancer-specific differentially methylated loci are involved in various networks including cancer disease, nervous system development and function, cell death and survival, cellular growth, cellular development, and proliferation. Furthermore, we identified a subset of probes that were differentially methylated between recurrent and non-recurrent chordomas. BeadChip methylation data was confirmed for these genes and gene expression was shown to be upregulated in methylated chordoma cell lines after treatment with 5-azaDC. Understanding epigenetic changes in chordomas may provide insights into chordoma tumorigenesis and development of epigenetic biomarkers.
Collapse
Affiliation(s)
- A Alholle
- a Centre for Rare Diseases and Personalized Medicine; School of Clinical and Experimental Medicine ; University of Birmingham ; Birmingham , UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|