1
|
Aili Y, Maimaitiming N, Qin H, Ji W, Fan G, Wang Z, Wang Y. Tumor microenvironment and exosomes in brain metastasis: Molecular mechanisms and clinical application. Front Oncol 2022; 12:983878. [PMID: 36338717 PMCID: PMC9631487 DOI: 10.3389/fonc.2022.983878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the “seed and soil” hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nuersimanguli Maimaitiming
- Department of Four Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Health Management, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Xinjiang Bazhou People’s Hospital, Xinjiang, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| |
Collapse
|
2
|
Valiente M, Ahluwalia MS, Boire A, Brastianos PK, Goldberg SB, Lee EQ, Le Rhun E, Preusser M, Winkler F, Soffietti R. The Evolving Landscape of Brain Metastasis. Trends Cancer 2018; 4:176-196. [PMID: 29506669 PMCID: PMC6602095 DOI: 10.1016/j.trecan.2018.01.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022]
Abstract
Metastasis, involving the spread of systemic cancer to the brain, results in neurologic disability and death. Current treatments are largely palliative in nature; improved therapeutic approaches represent an unmet clinical need. However, recent experimental and clinical advances challenge the bleak long-term outcome of this disease. Encompassing key recent findings in epidemiology, genetics, microenvironment, leptomeningeal disease, neurocognition, targeted therapy, immunotherapy, and prophylaxis, we review preclinical and clinical studies to provide a comprehensive picture of contemporary research and the management of secondary brain tumors.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid, Spain.
| | - Manmeet S Ahluwalia
- Brain Metastasis Research Program, Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Medicine, Cleveland Clinic, Neurological Institute, 9500 Euclid Avenue, 44195 Cleveland, OH, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065 New York, NY, USA
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine; Division of Neuro-Oncology, Department of Neurology; Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street Boston, 02114 Boston, MA, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, 02215 Boston, MA, USA
| | - Emilie Le Rhun
- Neuro-Oncology, Department of Neurosurgery, University Hospital Lille, Salengro Hospital, Rue Emile Laine, 59037 Lille, France; Neurology, Department of Medical Oncology, Oscar Lambret Center, 59020 Lille, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1192, Villeneuve d'Ascq, France; Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Comprehensive Cancer Center Vienna, CNS Unit (CCC-CNS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University Hospital Turin, Via Cherasco 15, 10126 Turin, Italy.
| |
Collapse
|
3
|
Zhong W, Hu C. [Tumor Cells and Micro-environment in Brain Metastases]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:626-35. [PMID: 27666556 PMCID: PMC5972957 DOI: 10.3779/j.issn.1009-3419.2016.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
近年来,随着早期诊断的方法的出现及精准治疗的应用,肺癌患者的生存及生活质量都得到很大改善。然而,对于肺癌的脑转移病灶,目前仍缺乏一个理想的治疗方案,严重影响了该部分患者生存状态。了解肿瘤细胞如何在中枢神经系统定植、生长和侵袭等相关生物学行为及其产生机制对预防及治疗肿瘤细胞脑转移病灶具有重大的意义。“种子-土壤”这一假说可以很好的解释这一过程,这一假说的关键即肿瘤细胞可与中枢神经系统微环境各组成之间产生相互适应性变化,正是这种相互作用决定了脑转移病灶的发生发展。本文就脑转移肿瘤细胞、脑转移肿瘤微环境及他们之间的相互作用进行综述,旨在为脑转移病灶的治疗提供新的思路。
Collapse
Affiliation(s)
- Wen Zhong
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Abstract
Seventy percent of cancer patients have detectable metastases when they receive a diagnosis and 90% of cancer deaths result from metastases. These two facts emphasise the urgency for research to study the mechanisms and processes that enable metastasis. We need to develop a greater understanding of the cellular and molecular mechanisms that cause metastasis and also we need to do more. We must also consider the micro- and macro-environmental factors that influence this disease. Studying this environmental context has led us to update the ‘seed and soil’ hypothesis which dates back to the 19th century. This theory describes cancerous cells as seeds and the substrate as the soil in target organs though this may seem antiquated. Nonetheless, the tissue specificity that researchers have recently observed in metastatic colonisation supports the validity of the seed and soil theory. We now know that the metastatic potential of a tumour cell depends on multiple, reciprocal interactions between the primary tumour and distant sites. These interactions determine tumour progression. Studies of metastasis have allowed us to develop treatments that focus on therapeutic effectiveness. These new treatments account for the frequent metastasis of some tumours to target organs such as bones, lungs, brain, and liver. The purpose of this review is first to describe interactions between the cellular and molecular entities and the target organ tumour environment that enables metastasis. A second aim is to describe the complex mechanisms that mediate these interactions.
Collapse
Affiliation(s)
- Francisco Arvelo
- Life Sciences Centre, Institute for Advanced Studies Foundation [Fundación Instituto de Estudios Avanzado]-IDEA, Apartado 17606, Caracas 1015-A, Venezuela; Tumour Biology Culture and Tissue Laboratory, Experimental Biology Institute, Central University of Venezuela, Apartado Apartado 47114, Caracas 1041-A, Venezuela
| | - Felipe Sojo
- Life Sciences Centre, Institute for Advanced Studies Foundation [Fundación Instituto de Estudios Avanzado]-IDEA, Apartado 17606, Caracas 1015-A, Venezuela
| | - Carlos Cotte
- Tumour Biology Culture and Tissue Laboratory, Experimental Biology Institute, Central University of Venezuela, Apartado Apartado 47114, Caracas 1041-A, Venezuela
| |
Collapse
|