1
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
2
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Morrison C, Weterings E, Gravbrot N, Hammer M, Weinand M, Sanan A, Pandey R, Mahadevan D, Stea B. Gene Expression Patterns Associated with Survival in Glioblastoma. Int J Mol Sci 2024; 25:3668. [PMID: 38612480 PMCID: PMC11011684 DOI: 10.3390/ijms25073668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate gene expression alterations associated with overall survival (OS) in glioblastoma (GBM). Using the Nanostring nCounter platform, we identified four genes (COL1A2, IGFBP3, NGFR, and WIF1) that achieved statistical significance when comparing GBM with non-neoplastic brain tissue. The four genes were included in a multivariate Cox Proportional Hazard model, along with age, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation, to create a unique glioblastoma prognostic index (GPI). The GPI score inversely correlated with survival: patient with a high GPI had a median OS of 7.5 months (18-month OS = 9.7%) whereas patients with a low GPI had a median OS of 20.1 months (18-month OS = 54.5%; log rank p-value = 0.004). The GPI score was then validated in 188 GBM patients from The Cancer Genome Atlas (TCGA) from a national data base; similarly, patients with a high GPI had a median OS of 10.5 months (18-month OS = 12.4%) versus 16.9 months (18-month OS = 41.5%) for low GPI (log rank p-value = 0.0003). We conclude that this novel mRNA-based prognostic index could be useful in classifying GBM patients into risk groups and refine prognosis estimates to better inform treatment decisions or stratification into clinical trials.
Collapse
Affiliation(s)
- Christopher Morrison
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| | - Eric Weterings
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| | - Nicholas Gravbrot
- College of Medicine, University of Arizona, Tucson Campus, Tucson, AZ 85724, USA; (N.G.); (M.H.)
| | - Michael Hammer
- College of Medicine, University of Arizona, Tucson Campus, Tucson, AZ 85724, USA; (N.G.); (M.H.)
- Department of Neurology, University of Arizona Genetics Core, Tucson, AZ 85724, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
| | - Abhay Sanan
- Center for Neurosciences, Tucson, AZ 85719, USA;
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center Bioinformatics Shared Resource, and College of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA;
| | - Baldassarre Stea
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| |
Collapse
|
4
|
de la Fuente MI. Adult-type Diffuse Gliomas. Continuum (Minneap Minn) 2023; 29:1662-1679. [PMID: 38085893 DOI: 10.1212/con.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article highlights key aspects of the diagnosis and management of adult-type diffuse gliomas, including glioblastomas and IDH-mutant gliomas relevant to the daily practice of the general neurologist. LATEST DEVELOPMENTS The advances in molecular characterization of gliomas have translated into more accurate prognostication and tumor classification. Gliomas previously categorized by histological appearance solely as astrocytomas or oligodendrogliomas are now also defined by molecular features. Furthermore, ongoing clinical trials have incorporated these advances to tailor more effective treatments for specific glioma subtypes. ESSENTIAL POINTS Despite recent insights into the molecular aspects of gliomas, these tumors remain incurable. Care for patients with these complex tumors requires a multidisciplinary team in which the general neurologist has an important role. Efforts focus on translating the latest data into more effective therapies that can prolong survival.
Collapse
|
5
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
6
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Morrison C, Weterings E, Mahadevan D, Sanan A, Weinand M, Stea B. Expression Levels of RAD51 Inversely Correlate with Survival of Glioblastoma Patients. Cancers (Basel) 2021; 13:cancers13215358. [PMID: 34771522 PMCID: PMC8582387 DOI: 10.3390/cancers13215358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Identifying prognostic and predictive biomarkers for glioblastoma (GBM), a primary brain tumor, is essential in improving patient survival. We utilized gene expression profiling to investigate a uniform population of GBM patients who had been treated with surgery and adjuvant radiation therapy versus normal brain tissue, and identified high RAD51 expression as a poor prognostic marker that is amenable to therapeutic intervention. This observation was confirmed utilizing a publicly available gene expression dataset in a cohort of GBM patients. Abstract Treatment failures of glioblastoma (GBM) occur within high-dose radiation fields. We hypothesized that this is due to increased capacity for DNA damage repair in GBM. We identified 24 adult GBM patients treated with maximal safe resection followed by radiation with concurrent and adjuvant temozolomide. The mRNA from patients was quantified using NanoString Technologies’ nCounter platform and compared with 12 non-neoplastic temporal lobe tissue samples as a control. Differential expression analysis identified seven DNA repair genes significantly upregulated in GBM tissues relative to controls (>4-fold difference, adjusted p values < 0.001). Among these seven genes, Cox proportional hazards models identified RAD51 to be associated with an increased risk of death (HR = 3.49; p = 0.03). Kaplan–Meier (KM) analysis showed that patients with high RAD51 expression had significantly shorter OS compared to low levels (median OS of 10.6 mo. vs 20.1 mo.; log-rank p = 0.03). Our findings were validated in a larger external dataset of 162 patients using publicly available gene expression data quantified by the same NanoString technology (median OS of 13.8 mo. vs. 17.4 mo; log-rank p = 0.006). Within this uniformly treated GBM population, RAD51, in the homologous recombination pathway, was overexpressed (vs. normal brain) and inversely correlated with OS. High RAD51 expression may be a prognostic biomarker and a therapeutic target in GBM.
Collapse
Affiliation(s)
- Christopher Morrison
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.); (E.W.)
| | - Eric Weterings
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.); (E.W.)
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA;
| | - Abhay Sanan
- Center for Neurosciences, Tucson, AZ 85718, USA;
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA;
| | - Baldassarre Stea
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.); (E.W.)
- Correspondence: ; Tel.: +1-(520)-694-0861
| |
Collapse
|
8
|
Regev O, Merkin V, Blumenthal DT, Melamed I, Kaisman-Elbaz T. Tumor-Treating Fields for the treatment of glioblastoma: a systematic review and meta-analysis. Neurooncol Pract 2021; 8:426-440. [PMID: 34277021 PMCID: PMC8278345 DOI: 10.1093/nop/npab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tumor-Treating Fields (TTFields) is an emerging treatment modality for glioblastoma (GBM). Studies have shown a good safety profile alongside improved efficacy in newly diagnosed GBM (ndGBM), while a less clear effect was shown for recurrent GBM (rGBM). Despite regulatory support, sectors of the neuro-oncology community have been reluctant to accept it as part of the standard treatment protocol. To establish an objective understanding of TTFields' mechanism of action, safety, efficacy, and economical implications, we conducted a systematic literature review and meta-analysis. METHODS A systematic search was conducted in PubMed, Scopus, and Cochrane databases. Twenty studies met the pre-defined inclusion criteria, incorporating 1636 patients (542 ndGBM and 1094 rGBM), and 11 558 patients (6403 ndGBM and 5155 rGBM) analyzed for the clinical outcomes and safety endpoints, respectively. RESULTS This study demonstrated improved clinical efficacy and a good safety profile of TTFields. For ndGBM, pooled median overall survival (OS) and progression-free survival (PFS) were 21.7 (95%CI = 19.6-23.8) and 7.2 (95%CI = 6.1-8.2) months, respectively. For rGBM, pooled median OS and PFS were 10.3 (95%CI = 8.3-12.8) and 5.7 (95%CI = 2.8-10) months, respectively. Compliance of ≥75% was associated with an improved OS and the predominant adverse events were dermatologic, with a pooled prevalence of 38.4% (95%CI = 32.3-44.9). Preclinical studies demonstrated TTFields' diverse molecular mechanism of action, its potential synergistic efficacy, and suggest possible benefits for certain populations. CONCLUSIONS This study supports the use of TTFields for GBM, alongside the standard-of-care treatment protocol, and provides a practical summary, discussing the current clinical and preclinical aspects of the treatment and their implication on the disease course.
Collapse
Affiliation(s)
- Ohad Regev
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Vladimir Merkin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| | - Deborah T Blumenthal
- Neuro-Oncology Service, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Israel Melamed
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| | - Tehila Kaisman-Elbaz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Neurosurgery, Soroka University Medical Center, Be’er-Sheva, Israel
| |
Collapse
|
9
|
Fabian C, Han M, Bjerkvig R, Niclou SP. Novel facets of glioma invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:33-64. [PMID: 33962750 DOI: 10.1016/bs.ircmb.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant gliomas including Glioblastoma (GBM) are characterized by extensive diffuse tumor cell infiltration throughout the brain, which represents a major challenge in clinical disease management. While surgical resection is beneficial for patient outcome, it is well recognized that tumor cells at the invasive front or beyond stay behind and constitute a major source of tumor recurrence. Invasive glioma cells also represent a difficult therapeutic target since they are localized within normal functional brain areas with an intact blood brain barrier (BBB), thereby excluding most systemic drug treatments. Cell movement is mediated via the actin cytoskeleton where corresponding membrane protrusions play essential roles. This review provides an overview of the various paths of glioma cell invasion and underlines the specific aspects of the brain microenvironment. We highlight recent insight into tumor microtubes, neuro-glioma synapses and tumor metabolism which can regulate collective invasion processes. We also focus on the deregulation of actin cytoskeleton-related components in the context of glioma invasion, a deregulation that may be controlled by genomic alterations in tumor cells as well as by various external factors, including extracellular matrix (ECM) components and non-malignant stromal cells. Finally we critically assess the challenges and opportunities for therapeutically targeting glioma cell invasion.
Collapse
Affiliation(s)
- Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mingzhi Han
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 1134] [Impact Index Per Article: 226.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Abstract
BACKGROUND Tumor Treating Fields (TTF) have entered clinical practice for newly diagnosed and recurrent glioblastoma (GGM). However, controversies remain unresolved with regard to appropriate usage. We sought to determine TTF usage in major academic neuro-oncology programs in New York City, USA and Heidelberg, Germany and understand current attitudes toward TTF usage among providers. METHODS We retrospectively determined TTF usage among patients with GGM, before and since the publication of key clinical trial results and regulatory approvals. We also surveyed attendees of an educational session related to TTF during the 2019 American Society of Clinical Oncology annual meeting. RESULTS TTF usage remains infrequent (3-12% of patients with newly diagnosed GBM, and 0-16% of patients with recurrent disease) in our practices, although it has increased over time. Among 30 survey respondents (77% of whom self-identified as neuro- or medical oncologists), 60% were convinced that TTF prolongs survival for newly diagnosed GGM despite published phase III data and regulatory approval, and only 30% viewed TTF as definitively part of the standard of care treatment. A majority (87%) opposed mandating TTF incorporation into the design of clinical trials. CONCLUSIONS Providers continue to view TTF with some level of skepticism, with a lack of additional supportive data and logistical concerns representing continued barriers to uptake.
Collapse
Affiliation(s)
- Andrew B Lassman
- Department of Neurology, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, New York, New York, USA
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | | | - Peter C Pan
- Department of Neurology, New York, New York, USA
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center and Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
12
|
Taphoorn MJB, Dirven L, Kanner AA, Lavy-Shahaf G, Weinberg U, Taillibert S, Toms SA, Honnorat J, Chen TC, Sroubek J, David C, Idbaih A, Easaw JC, Kim CY, Bruna J, Hottinger AF, Kew Y, Roth P, Desai R, Villano JL, Kirson ED, Ram Z, Stupp R. Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 2019; 4:495-504. [PMID: 29392280 DOI: 10.1001/jamaoncol.2017.5082] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Importance Tumor-treating fields (TTFields) therapy improves both progression-free and overall survival in patients with glioblastoma. There is a need to assess the influence of TTFields on patients' health-related quality of life (HRQoL). Objective To examine the association of TTFields therapy with progression-free survival and HRQoL among patients with glioblastoma. Design, Setting, and Participants This secondary analysis of EF-14, a phase 3 randomized clinical trial, compares TTFields and temozolomide or temozolomide alone in 695 patients with glioblastoma after completion of radiochemotherapy. Patients with glioblastoma were randomized 2:1 to combined treatment with TTFields and temozolomide or temozolomide alone. The study was conducted from July 2009 until November 2014, and patients were followed up through December 2016. Interventions Temozolomide, 150 to 200 mg/m2/d, was given for 5 days during each 28-day cycle. TTFields were delivered continuously via 4 transducer arrays placed on the shaved scalp of patients and were connected to a portable medical device. Main Outcomes and Measures Primary study end point was progression-free survival; HRQoL was a predefined secondary end point, measured with questionnaires at baseline and every 3 months thereafter. Mean changes from baseline scores were evaluated, as well as scores over time. Deterioration-free survival and time to deterioration were assessed for each of 9 preselected scales and items. Results Of the 695 patients in the study, 639 (91.9%) completed the baseline HRQoL questionnaire. Of these patients, 437 (68.4%) were men; mean (SD) age, 54.8 (11.5) years. Health-related quality of life did not differ significantly between treatment arms except for itchy skin. Deterioration-free survival was significantly longer with TTFields for global health (4.8 vs 3.3 months; P < .01); physical (5.1 vs 3.7 months; P < .01) and emotional functioning (5.3 vs 3.9 months; P < .01); pain (5.6 vs 3.6 months; P < .01); and leg weakness (5.6 vs 3.9 months; P < .01), likely related to improved progression-free survival. Time to deterioration, reflecting the influence of treatment, did not differ significantly except for itchy skin (TTFields worse; 8.2 vs 14.4 months; P < .001) and pain (TTFields improved; 13.4 vs 12.1 months; P < .01). Role, social, and physical functioning were not affected by TTFields. Conclusions and Relevance The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved survival without a negative influence on HRQoL except for more itchy skin, an expected consequence from the transducer arrays. Trial Registration clinicaltrials.gov Identifier: NCT00916409.
Collapse
Affiliation(s)
- Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Uri Weinberg
- Research and Development, Novocure, Haifa, Switzerland
| | - Sophie Taillibert
- Department of Neurology 2, Salpêtrière University Hospital, Assistance Public Hôpitaux de Paris, L'Université Pierre et Marie Curie University, Paris VI University, Paris, France
| | - Steven A Toms
- Department of Neurosurgery, Geisinger Medical Center, Danville, Pennsylvania
| | - Jerome Honnorat
- Department of Neuro-oncology, Hospices Civils de Lyon, University Claude Bernard Lyon, Lyon, France
| | - Thomas C Chen
- Department of Neurosurgery, University of Southern California, Los Angeles
| | - Jan Sroubek
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Carlos David
- Department of Neurosurgery, Lahey Clinic, Burlington, Massachusetts
| | - Ahmed Idbaih
- Department of Neurology 2, Salpêtrière University Hospital, Assistance Public Hôpitaux de Paris, L'Université Pierre et Marie Curie University, Paris VI University, Paris, France
| | - Jacob C Easaw
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, California
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Bundang, Korea
| | - Jordi Bruna
- Department of Neurology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Andreas F Hottinger
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yvonne Kew
- Clinical Neuro-Oncology Research Program, Department of Internal Medicine, Methodist Hospital, Houston, Texas
| | - Patrick Roth
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Rajiv Desai
- Neurosurgery and Spine Association, Maine Medical Center, Scarborough, Maine
| | - John L Villano
- Clinical Neuro-Oncology Research Program, Department of Internal Medicine, University of Kentucky Medical Center, Lexington
| | | | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Roger Stupp
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Northwestern Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
13
|
Hayes MJ, Prasad V. Association between conflict of interest and published position on tumor-treating fields for the treatment of glioblastoma. J Cancer Policy 2019. [DOI: 10.1016/j.jcpo.2019.100189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wang Y, Pandey M, Ballo MT. Integration of Tumor-Treating Fields into the Multidisciplinary Management of Patients with Solid Malignancies. Oncologist 2019; 24:e1426-e1436. [PMID: 31444292 PMCID: PMC6975944 DOI: 10.1634/theoncologist.2017-0603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor treating fields, a noninvasive cancer treatment using low intensity alternating electric fields, offers clinical opportunities with unique challenges. This review focuses on the mechanism of action of this treatment, the known pre‐clinical and clinical experience, and the practical issues surrounding its use in the multidisciplinary management of patients with solid malignancies. Tumor‐treating fields (TTFields) are a noninvasive antimitotic cancer treatment consisting of low‐intensity alternating electric fields delivered to the tumor or tumor bed via externally applied transducer arrays. In multiple in vitro and in vivo cancer cell lines, TTFields therapy inhibits cell proliferation, disrupts cell division, interferes with cell migration and invasion, and reduces DNA repair. Human trials in patients with primary glioblastoma showed an improvement in overall survival, and trials in patients with unresectable malignant pleural mesothelioma showed favorable outcomes compared with historical control. This led to U.S. Food and Drug Administration approval in both clinical situations, paving the way for development of trials investigating TTFields in other malignancies. Although these trials are ongoing, the existing evidence suggests that TTFields have activity outside of neuro‐oncology, and further study into the mechanism of action and clinical activity is required. In addition, because TTFields are a previously unrecognized antimitotic therapy with a unique mode of delivery, the oncological community must address obstacles to widespread patient and provider acceptance. TTFields will likely join surgery, systemic therapy, and radiation therapy as a component of multimodality management of patients with solid malignancies. Implications for Practice. Tumor‐treating fields (TTFields) exhibit a broad range of antitumor activities. Clinically, they improve overall survival for patients with newly diagnosed glioblastoma. The emergence of TTFields has changed the treatment regimen for glioblastoma. Clinicians need to understand the practical issues surrounding its use in the multidisciplinary management of patients with glioblastoma. With ongoing clinical trials, TTFields likely will become another treatment modality for solid malignancies.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Manjari Pandey
- Department of Hematology/Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Matthew T Ballo
- Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study. J Neurooncol 2017; 134:357-362. [PMID: 28669012 DOI: 10.1007/s11060-017-2533-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) mutations are commonly observed in Glioblastoma (GBM) and have long posed as a target for new therapies. Trials involving erlotinib have shown mixed results, likely owing to a mechanism of the mutation that may instead favor other EGFR inhibitors, such as lapatinib. We aimed to determine whether or not pulse high-dose lapatinib was a safe and tolerable regimen in addition to standard therapy. We recruited adult patients with newly-diagnosed GBM who had Karnofsky Performance Status ≥60, normal baseline hematological, hepatic, and renal function tests, and no prior history of radiation or treatment with EGFR inhibitor. Lapatinib was administered at 2500 mg twice daily for two consecutive days per week on a weekly basis throughout concomitant and adjuvant standard therapy. The primary endpoints were tolerability and safety. 12 patients were enrolled in this study over 2 years. Of the non-hematological adverse events, there were 2 grade 3 events, fatigue and post-radiation cystic brain necrosis. The most common adverse events in general were fatigue, rashes, and diarrhea. Of the hematological adverse events, there were 13 grade 3 events, all of which were due to lymphopenia and affected 6 of 12 patients. Pulse high-dose lapatinib in addition to standard therapy for newly-diagnosed GBM is a tolerable and safe regimen, but higher rates of lymphopenia should be noted. However, further investigations will be required to evaluate the efficacy of this combination for the treatments of GBM. Trial registration ClinicalTrials.gov Identifier: NCT01591577.
Collapse
|