1
|
Arab I, Lim SG, Suk K, Lee WH. LINC01270 Regulates the NF-κB-Mediated Pro-Inflammatory Response via the miR-326/LDOC1 Axis in THP-1 Cells. Cells 2024; 13:2027. [PMID: 39682774 PMCID: PMC11640305 DOI: 10.3390/cells13232027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Long intergenic noncoding (LINC)01270 is a 2278 bp transcript belonging to the intergenic subset of long noncoding (lnc)RNAs. Despite increased reports of LINC01270's involvement in different diseases, evident research on its effects on inflammation is yet to be achieved. In the present study, we investigated the potential role of LINC01270 in modulating the inflammatory response in the human monocytic leukemia cell line THP-1. Lipopolysaccharide treatment upregulated LINC01270 expression, and siRNA-mediated suppression of LINC01270 enhanced NF-κB activity and the subsequent production of cytokines IL-6, IL-8, and MCP-1. Interestingly, the knockdown of LINC01270 downregulated expression of leucine zipper downregulated in cancer 1 (LDOC1), a novel NF-κB suppressor. An analysis of the LINC01270/micro-RNA (miRNA)/protein interactome profile identified miR-326 as a possible mediator. Synthetic RNA agents that perturb the interaction among LINC01270, miR-326, and LDOC1 mRNA mitigated the changes caused by LINC01270 knockdown in THP-1 cells. Additionally, a luciferase reporter assay in HEK293 cells further confirmed that LINC01270 knockdown enhances NF-κB activation, while its overexpression has the opposite effect. This study provides insight into LINC01270's role in modulating inflammatory responses to lipopolysaccharide stimulation in THP-1 cells via the miR-326/LDOC1 axis, which negatively regulates NF-κB activation.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (I.A.); (S.-G.L.)
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (I.A.); (S.-G.L.)
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (I.A.); (S.-G.L.)
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Griesinger AM, Riemondy K, Eswaran N, Donson AM, Willard N, Prince EW, Paine SM, Bowes G, Rheaume J, Chapman RJ, Ramage J, Jackson A, Grundy RG, Foreman NK, Ritzmann TA. Multi-omic approach identifies hypoxic tumor-associated myeloid cells that drive immunobiology of high-risk pediatric ependymoma. iScience 2023; 26:107585. [PMID: 37694144 PMCID: PMC10484966 DOI: 10.1016/j.isci.2023.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ependymoma (EPN) is a devastating childhood brain tumor. Single-cell analyses have illustrated the cellular heterogeneity of EPN tumors, identifying multiple neoplastic cell states including a mesenchymal-differentiated subpopulation which characterizes the PFA1 subtype. Here, we characterize the EPN immune environment, in the context of both tumor subtypes and tumor cell subpopulations using single-cell sequencing (scRNAseq, n = 27), deconvolution of bulk tumor gene expression (n = 299), spatial proteomics (n = 54), and single-cell cytokine release assays (n = 12). We identify eight distinct myeloid-derived subpopulations from which a group of cells, termed hypoxia myeloid cells, demonstrate features of myeloid-derived suppressor cells, including IL6/STAT3 pathway activation and wound healing ontologies. In PFA tumors, hypoxia myeloid cells colocalize with mesenchymal-differentiated cells in necrotic and perivascular niches and secrete IL-8, which we hypothesize amplifies the EPN immunosuppressive microenvironment. This myeloid cell-driven immunosuppression will need to be targeted for immunotherapy to be effective in this difficult-to-cure childhood brain tumor.
Collapse
Affiliation(s)
- Andrea M. Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nithyashri Eswaran
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew M. Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric W. Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simon M.L. Paine
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Georgia Bowes
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | | | - Rebecca J. Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Judith Ramage
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrew Jackson
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Nicholas K. Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Timothy A. Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| |
Collapse
|
3
|
Budhiraja S, Najem H, Tripathi S, Wadhawani NR, Horbinski C, McCord M, Lenzen AC, Heimberger AB, DeCuypere M. Immunobiology and Cytokine Modulation of the Pediatric Brain Tumor Microenvironment: A Scoping Review. Cancers (Basel) 2023; 15:3655. [PMID: 37509316 PMCID: PMC10377457 DOI: 10.3390/cancers15143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Utilizing a Scoping Review strategy in the domain of immune biology to identify immune therapeutic targets, knowledge gaps for implementing immune therapeutic strategies for pediatric brain tumors was assessed. The analysis demonstrated limited efforts to date to characterize and understand the immunological aspects of tumor biology with an over-reliance on observations from the adult glioma population. Foundational knowledge regarding the frequency and ubiquity of immune therapeutic targets is an area of unmet need along with the development of immune-competent pediatric tumor models to test therapeutics and especially combinatorial treatment. Opportunities arise in the evolution of pediatric tumor classification from histological to molecular with targeted immune therapeutics.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nitin R. Wadhawani
- Division of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Matthew McCord
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alicia C. Lenzen
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (C.H.); (A.B.H.)
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
6
|
Larrew T, Saway BF, Lowe SR, Olar A. Molecular Classification and Therapeutic Targets in Ependymoma. Cancers (Basel) 2021; 13:cancers13246218. [PMID: 34944845 PMCID: PMC8699461 DOI: 10.3390/cancers13246218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Ependymoma is a biologically diverse tumor wherein molecular classification has superseded traditional histological grading based on its superior ability to characterize behavior, prognosis, and possible targeted therapies. The current, updated molecular classification of ependymoma consists of ten distinct subgroups spread evenly among the spinal, infratentorial, and supratentorial compartments, each with its own distinct clinical and molecular characteristics. In this review, the history, histopathology, standard of care, prognosis, oncogenic drivers, and hypothesized molecular targets for all subgroups of ependymoma are explored. This review emphasizes that despite the varied behavior of the ependymoma subgroups, it remains clear that research must be performed to further elucidate molecular targets for these tumors. Although not all ependymoma subgroups are oncologically aggressive, development of targeted therapies is essential, particularly for cases where surgical resection is not an option without causing significant morbidity. The development of molecular therapies must rely on building upon our current understanding of ependymoma oncogenesis, as well as cultivating transfer of knowledge based on malignancies with similar genomic alterations.
Collapse
Affiliation(s)
- Thomas Larrew
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | - Brian Fabian Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | | | - Adriana Olar
- NOMIX Laboratories, Denver, CO 80218, USA
- Correspondence: or
| |
Collapse
|
7
|
An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers (Basel) 2021; 13:cancers13133221. [PMID: 34203272 PMCID: PMC8269186 DOI: 10.3390/cancers13133221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although biological information and the molecular classification of ependymoma have been studied, the treatment systems for ependymoma are still insufficient. In addition, because the disease occurs infrequently, it is difficult to obtain sufficient data to conduct large-scale or randomized clinical trials. Therefore, this study is intended to emphasize the importance of understanding its pathological characteristics and prognosis as well as developing treatments for ependymoma through multilateral studies. Abstract Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.
Collapse
|
8
|
Gillen AE, Riemondy KA, Amani V, Griesinger AM, Gilani A, Venkataraman S, Madhavan K, Prince E, Sanford B, Hankinson TC, Handler MH, Vibhakar R, Jones KL, Mitra S, Hesselberth JR, Foreman NK, Donson AM. Single-Cell RNA Sequencing of Childhood Ependymoma Reveals Neoplastic Cell Subpopulations That Impact Molecular Classification and Etiology. Cell Rep 2021; 32:108023. [PMID: 32783945 DOI: 10.1016/j.celrep.2020.108023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Ependymoma (EPN) is a brain tumor commonly presenting in childhood that remains fatal in most children. Intra-tumoral cellular heterogeneity in bulk-tumor samples significantly confounds our understanding of EPN biology, impeding development of effective therapy. We, therefore, use single-cell RNA sequencing, histology, and deconvolution to catalog cellular heterogeneity of the major childhood EPN subgroups. Analysis of PFA subgroup EPN reveals evidence of an undifferentiated progenitor subpopulation that either differentiates into subpopulations with ependymal cell characteristics or transitions into a mesenchymal subpopulation. Histological analysis reveals that progenitor and mesenchymal subpopulations co-localize in peri-necrotic zones. In conflict with current classification paradigms, relative PFA subpopulation proportions are shown to determine bulk-tumor-assigned subgroups. We provide an interactive online resource that facilitates exploration of the EPN single-cell dataset. This atlas of EPN cellular heterogeneity increases understanding of EPN biology.
Collapse
Affiliation(s)
- Austin E Gillen
- RNA Biosciences Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kent A Riemondy
- RNA Biosciences Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vladimir Amani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Krishna Madhavan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Michael H Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Ken L Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Siddhartha Mitra
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- RNA Biosciences Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Abstract
INTRODUCTION Ependymoma is the third most common malignant pediatric brain tumor. Although the biology that drives ependymoma is slowly being unraveled, the ability to translate these findings to clinical care remains an ongoing challenge. Epigenetic alterations appear to play a central role in the development of molecular classification of ependymoma. METHODS We reviewed the published literature available describing genetic and epigenetic underpinnings of ependymoma that have been reported to date and have summarized the information regarding genetic drivers of ependymoma that may point us toward therapeutic strategies. RESULTS Ependymoma is a molecularly heterogeneous disease which has now been divided into at least nine distinct molecular subtypes based on DNA methylation and gene expression profiling. DNA methylation has emerged as an effective tool for classification of brain tumors alongside histopathology and other molecular diagnostics. There have been large retrospective cohorts describing molecular subgroup identity as a powerful independent predictor of outcome. There is limited published data on prospective trials to date however this is forthcoming which will lead to molecular stratification in the next generation of clinical studies. CONCLUSION This is a review of recent advancements in our understanding of the epigenetic basis of ependymoma and discussion of how these findings reveal potential therapeutic opportunities.
Collapse
|
10
|
Zhang S, Zeng T, Hu B, Zhang YH, Feng K, Chen L, Niu Z, Li J, Huang T, Cai YD. Discriminating Origin Tissues of Tumor Cell Lines by Methylation Signatures and Dys-Methylated Rules. Front Bioeng Biotechnol 2020; 8:507. [PMID: 32528944 PMCID: PMC7264161 DOI: 10.3389/fbioe.2020.00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for multiple biological processes. DNA methylation in mammals acts as an epigenetic mark of transcriptional repression. Aberrant levels of DNA methylation can be observed in various types of tumor cells. Thus, DNA methylation has attracted considerable attention among researchers to provide new and feasible tumor therapies. Conventional studies considered single-gene methylation or specific loci as biomarkers for tumorigenesis. However, genome-scale methylated modification has not been completely investigated. Thus, we proposed and compared two novel computational approaches based on multiple machine learning algorithms for the qualitative and quantitative analyses of methylation-associated genes and their dys-methylated patterns. This study contributes to the identification of novel effective genes and the establishment of optimal quantitative rules for aberrant methylation distinguishing tumor cells with different origin tissues.
Collapse
Affiliation(s)
- Shiqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Liu F, Dong H, Mei Z, Huang T. Investigation of miRNA and mRNA Co-expression Network in Ependymoma. Front Bioeng Biotechnol 2020; 8:177. [PMID: 32266223 PMCID: PMC7096354 DOI: 10.3389/fbioe.2020.00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Ependymoma (EPN) is a rare primary tumor of the central nervous system (CNS) that affects both children and adults. Despite the definition and classification of distinct molecular subgroups, there remains a group of EPNs with a balanced genome, which makes it difficult to predict a prognosis of patients with EPN. The role of miRNA-mRNA network on EPN is still poorly understood. We assessed the involvement of miRNA-mRNA pairs in EPN by applying a weighted co-expression network analysis (WGCNA) approach. Using whole genome expression profile analysis followed by functional enrichment, we detected hub genes involved in active proliferation and DNA replication of nerve cells. Key genes including CYP11B1, KRT33B, RUNX1T1, SIK1, MAP3K4, MLANA, and SFRP5 identified in co-expression networks were regulated by miR-15a and miR-24-1. These seven miRNA-mRNA pairs were considered to influence not only pathways in cancer and tumor suppression process, but also MAPK, NF-kappaB, and WNT signaling pathways which were associated with tumorigenesis and development. This study provides a novel insight into potential diagnostic biomarkers of EPN and may have value in choosing therapeutic targets with clinical utility.
Collapse
Affiliation(s)
- Feili Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hang Dong
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Lester A, McDonald KL. Intracranial ependymomas: molecular insights and translation to treatment. Brain Pathol 2020; 30:3-12. [PMID: 31433520 PMCID: PMC8018002 DOI: 10.1111/bpa.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ependymomas are primary central nervous system tumors (CNS), arising within the posterior fossa and supratentorial regions of the brain, and in the spine. Over the last decade, research has resulted in substantial insights into the molecular characteristics of ependymomas, and significant advances have been made in the establishment of a molecular classification system. Ependymomas both within and between the three CNS regions in which they arise, have been shown to contain distinct genetic, epigenetic and cytogenic aberrations, with at least three molecularly distinct subgroups identified within each region. However, these advances in molecular characterization have yet to be translated into clinical practice, with the standard treatment for ependymoma patients largely unchanged. This review summarizes the advances made in the molecular characterization of intracranial ependymomas, outlines the progress made in establishing preclinical models and proposes strategies for moving toward subgroup-specific preclinical investigations and treatment.
Collapse
Affiliation(s)
- Ashleigh Lester
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| | - Kerrie L. McDonald
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| |
Collapse
|
13
|
Pierce AM, Witt DA, Donson AM, Gilani A, Sanford B, Sill M, Van Court B, Oweida A, Prince EW, Steiner J, Danis E, Dorris K, Hankinson T, Handler MH, Jones KL, Karam SD, Serkova NJ, Vibhakar R, Foreman NK, Griesinger AM. Establishment of patient-derived orthotopic xenograft model of 1q+ posterior fossa group A ependymoma. Neuro Oncol 2019; 21:1540-1551. [PMID: 31276586 PMCID: PMC6917412 DOI: 10.1093/neuonc/noz116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment for pediatric posterior fossa group A (PFA) ependymoma with gain of chromosome 1q (1q+) has not improved over the past decade owing partially to lack of clinically relevant models. We described the first 2 1q+ PFA cell lines, which have significantly enhanced our understanding of PFA tumor biology and provided a tool to identify specific 1q+ PFA therapies. However, cell lines do not accurately replicate the tumor microenvironment. Our present goal is to establish patient-derived xenograft (PDX) mouse models. METHODS Disaggregated tumors from 2 1q+ PFA patients were injected into the flanks of NSG mice. Flank tumors were then transplanted into the fourth ventricle or lateral ventricle of NSG mice. Characterization of intracranial tumors was performed using imaging, histology, and bioinformatics. RESULTS MAF-811_XC and MAF-928_XC established intracranially within the fourth ventricle and retained histological, methylomic, and transcriptomic features of primary patient tumors. We tested the feasibility of treating PDX mice with fractionated radiation or chemotherapy. Mice tolerated radiation despite significant tumor burden, and follow-up imaging confirmed radiation can reduce tumor size. Treatment with fluorouracil reduced tumor size but did not appear to prolong survival. CONCLUSIONS MAF-811_XC and MAF-928_XC are novel, authentic, and reliable models for studying 1q+ PFA in vivo. Given the successful response to radiation, these models will be advantageous for testing clinically relevant combination therapies to develop future clinical trials for this high-risk subgroup of pediatric ependymoma.
Collapse
Affiliation(s)
- Angela M Pierce
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Ahmed Gilani
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Martin Sill
- Hopp Children’s Cancer Centre at National Centre for Tumour Diseases Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Van Court
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Ayman Oweida
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Eric W Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Jenna Steiner
- Department of Radiology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Kathleen Dorris
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Todd Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Michael H Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Sana D Karam
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Natalie J Serkova
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
- Department of Radiology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Corresponding Author: Nicholas Foreman, 12800 E. 19th Ave. RC1N-4104, Aurora, CO 80045 ()
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
14
|
Zhang M, Iyer RR, Azad TD, Wang Q, Garzon-Muvdi T, Wang J, Liu A, Burger P, Eberhart C, Rodriguez FJ, Sciubba DM, Wolinsky JP, Gokaslan Z, Groves ML, Jallo GI, Bettegowda C. Genomic Landscape of Intramedullary Spinal Cord Gliomas. Sci Rep 2019; 9:18722. [PMID: 31822682 PMCID: PMC6904446 DOI: 10.1038/s41598-019-54286-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Intramedullary spinal cord tumors (IMSCTs) are rare neoplasms that have limited treatment options and are associated with high rates of morbidity and mortality. To better understand the genetic basis of these tumors we performed whole exome sequencing on 45 tumors and matched germline DNA, including twenty-nine spinal cord ependymomas and sixteen astrocytomas. Though recurrent somatic mutations in IMSCTs were rare, we identified NF2 mutations in 15.7% of tumors (ependymoma, N = 7; astrocytoma, N = 1), RP1 mutations in 5.9% of tumors (ependymoma, N = 3), and ESX1 mutations in 5.9% of tumors (ependymoma, N = 3). We further identified copy number amplifications in CTU1 in 25% of myxopapillary ependymomas. Given the paucity of somatic driver mutations, we further performed whole-genome sequencing of 12 tumors (ependymoma, N = 9; astrocytoma, N = 3). Overall, we observed that IMSCTs with intracranial histologic counterparts (e.g. glioblastoma) did not harbor the canonical mutations associated with their intracranial counterparts. Our findings suggest that the origin of IMSCTs may be distinct from tumors arising within other compartments of the central nervous system and provides the framework to begin more biologically based therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhang
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rajiv R Iyer
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Qing Wang
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joanna Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peter Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jean-Paul Wolinsky
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, IL, USA
| | - Ziya Gokaslan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Brown University School of Medicine, Providence, RI, USA
| | - Mari L Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurosurgery, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA.
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Expression and Clinical Significance of Translation Regulatory Long Non-Coding RNA 1 (TRERNA1) in Ependymomas. Pathol Oncol Res 2019; 26:1975-1981. [PMID: 31489574 DOI: 10.1007/s12253-019-00736-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNA) have emerged as vital molecules governing epithelial-to-mesenchymal transition (EMT) in cancers. Translation regulatory RNA 1 (TRERNA1) is one such lncRNA known to enhance the transcriptional activity of the EMT-transcription factor, Snail. We have previously demonstrated differential upregulation of EMT-transcription factors and cadherin switching across various clinico-pathologic-molecular subclasses of ependymomas (EPN). With an aim to analyze the correlation between the expression of TRERNA1 in EPNs, we performed gene expression analysis for TRERNA1 on 75 Grade II/III EPNs and correlated with tumor site, C11orf95-RELA fusions, age, MIB-1 proliferative indices, and outcome wherever available. Upregulation of gene expression levels of TRERNA1 was seen in intracranial EPNs, with highest expression levels in pediatric posterior fossa EPNs. High TRERNA1 expression was found associated with higher proliferative indices (p = 0.034) and shorter progression free survival (p = 0.002). Our study, for the first time, demonstrates an association between TRERNA1 expressions and pediatric posterior fossa EPNs. Further in-vivo and in-vitro studies are required to confirm these findings and evaluate TRERNA1 as a novel biomarker and potential therapeutic target in childhood PF-EPNs.
Collapse
|
16
|
Jiang J, Li Y, Jiang Z. Effects of LDOC1 on colorectal cancer cells via downregulation of the Wnt/β-catenin signaling pathway. Oncol Rep 2019; 41:3281-3291. [PMID: 31002361 PMCID: PMC6488979 DOI: 10.3892/or.2019.7126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor types of the digestive tract. Its incidence and mortality rates are among the highest of all gastrointestinal tumor types. The expression of leucine zipper downregulated in cancer 1 (LDOC1) is decreased in numerous cancer types. In the present study, the aim was to investigate the role of LDOC1 and determine the potential molecular mechanisms of its action in CRC. The expression of LDOC1 in CRC tissues and adjacent normal tissues was detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. LDOC1 expression in four CRC cell lines, compared with normal colorectal tissue, was determined by reverse transcription- polymerase chain reaction (RT-PCR), and two cell lines with relatively low expression were screened. Human LDOC1 cDNA was inserted into a lentiviral vector, and transfected into HCT-116 and Caco2 cell lines. The transfection efficiency was identified by RT-PCR and western blot analysis. Cell proliferation was detected by Cell Counting Kit-8 and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry assay. Migration and invasion were assessed using Transwell and Matrigel assays, respectively. Additionally, whether LDOC1 regulates the Wnt/β-catenin pathway was investigated by western blot analysis, and the expression and localization of β-catenin in CRC cells were demonstrated by cellular immunofluorescence. LDOC1 expression was downregulated in CRC tissues and cells. LDOC1 overexpression inhibited cell proliferation, migration and invasion, but promoted cells apoptosis. Furthermore, LDOC1 downregulated the Wnt/β-catenin pathway in CRC. In conclusion, LDOC1 is a tumor suppressor in CRC and it inhibits cell proliferation and promotes cell apoptosis. Additionally, it inhibits CRC cell metastasis by downregulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - You Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Abstract
Pediatric brain tumors are the primary cause of cancer-related death during childhood. Unfortunately, the number of primary and metastatic brain tumors is steadily increasing while the mortality rates for many central nervous system (CNS) lesions have remained stagnant. Molecularly defined tumor classes have been added to the most recent 2016 World Health Organization (WHO) Classification System of Central Nervous System Brain Tumors, driving potential new treatments and identifying targets to improve survival for these patients. Focusing on the genetic mutations most commonly seen in the pediatric CNS tumor population provides the ability to better define tumors based on shared molecular characteristics. Consequently, there is the potential for greater efficacy in targeted therapy to treat these identified genetic aberrations. Understanding the growing importance of molecular diagnosis in pediatric CNS tumors is vital to successfully using novel targeted therapies and improving patient outcomes.
Collapse
|
18
|
Witt DA, Donson AM, Amani V, Moreira DC, Sanford B, Hoffman LM, Handler MH, Mulcahy Levy JM, Jones KL, Nellan A, Foreman NK, Griesinger AM. Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr Blood Cancer 2018; 65:e26960. [PMID: 29350470 PMCID: PMC5867234 DOI: 10.1002/pbc.26960] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND A desperate need for novel therapies in pediatric ependymoma (EPN) exists, as chemotherapy remains ineffective and radiotherapy often fails. EPN have significant infiltration of immune cells, which correlates with outcome. Immune checkpoint inhibitors provide an avenue for new treatments. This study characterizes tumor-infiltrating immune cells in EPN and aims at predicting candidates for clinical trials using checkpoint inhibitors targeting PD-L1/PD-1 (programmed death ligand 1/programmed death 1). METHODS The transcriptomic profiles of the primary study cohort of EPN and other pediatric brain tumors were interrogated to identify PD-L1 expression levels. Transcriptomic findings were validated using the western blotting, immunohistochemistry and flow cytometry. RESULTS We evaluated PD-L1 mRNA expression across four intracranial subtypes of EPN in two independent cohorts and found supratentorial RELA fusion (ST-RELA) tumors to have significantly higher levels. There was a correlation between high gene expression and protein PD-L1 levels in ST-RELA tumors by both the western blot and immunohistochemisty. The investigation of EPN cell populations revealed PD-L1 was expressed on both tumor and myeloid cells in ST-RELA. Other subtypes had little PD-L1 in either tumor or myeloid cell compartments. Lastly, we measured PD-1 levels on tumor-infiltrating T cells and found ST-RELA tumors express PD-1 in both CD4 and CD8 T cells. A functional T-cell exhaustion assay found ST-RELA T cells to be exhausted and unable to secrete IFNγ on stimulation. CONCLUSIONS These findings in ST-RELA suggest tumor evasion and immunsuppression due to PD-L1/PD-1-mediated T-cell exhaustion. Trials of checkpoint inhibitors in EPN should be enriched for ST-RELA tumors.
Collapse
Affiliation(s)
- Davis A. Witt
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Andrew M. Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Daniel C. Moreira
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Lindsey M. Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Michael H. Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado,Department of Neurosurgery, University of Colorado Denver
| | - Jean M. Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Anandani Nellan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Nicholas K. Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Andrea M. Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|