1
|
Weise K, Madsen KH, Worbs T, Knösche TR, Korshøj A, Thielscher A. A Leadfield-Free Optimization Framework for Transcranially Applied Electric Currents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629095. [PMID: 39763744 PMCID: PMC11702683 DOI: 10.1101/2024.12.18.629095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Background Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain. Objective The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations. Methods We propose a leadfield-free optimization framework that allows the electrodes to be placed freely on the head surface. It is designed for the optimization of montages with a low to moderate number of spatially extended electrodes or electrode arrays. Spatial overlaps are systematically prevented during optimization, enabling arbitrary electrode shapes and configurations. The approach supports maximizing the field intensity in target region-of-interests (ROI) and optimizing for a desired focality-intensity tradeoff. Results We demonstrate montage optimization for standard two-electrode TES, focal center-surround TES, TIS, ECT and TTFields. Comparisons against reference simulations are used to validate the performance of the algorithm. The system requirements are kept moderate, allowing the optimization to run on regular notebooks and promoting its use in basic and clinical research. Conclusions The new framework complements existing optimization methods that require small electrodes, a predetermined discretization of the electrode positions on the scalp and work best for multi-channel systems. It strongly extends the possibilities to optimize electrode montages towards application-specific aims and supports researchers in discovering innovative stimulation schemes. The framework is available in SimNIBS.
Collapse
Affiliation(s)
- Konstantin Weise
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University of Applied Sciences (HTWK), Institute for Electrical Power Engineering, Leipzig, Germany
| | - Kristoffer H Madsen
- Technical University of Denmark, Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Torge Worbs
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Technical University of Denmark, Section for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Thomas R Knösche
- Leipzig University of Applied Sciences (HTWK), Institute for Electrical Power Engineering, Leipzig, Germany
| | - Anders Korshøj
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Technical University of Denmark, Section for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Fuster MM. Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm. Front Oncol 2024; 14:1417621. [PMID: 39165679 PMCID: PMC11333800 DOI: 10.3389/fonc.2024.1417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
An array of published cell-based and small animal studies have demonstrated a variety of exposures of cancer cells or experimental carcinomas to electromagnetic (EM) wave platforms that are non-ionizing and non-thermal. Overall effects appear to be inhibitory, inducing cancer cell stress or death as well as inhibition in tumor growth in experimental models. A variety of physical input variables, including discrete frequencies, amplitudes, and exposure times, have been tested, but drawing methodologic rationale and mechanistic conclusions across studies is challenging. Nevertheless, outputs such as tumor cytotoxicity, apoptosis, tumor membrane electroporation and leak, and reactive oxygen species generation are intriguing. Early EM platforms in humans employ pulsed electric fields applied either externally or using interventional tumor contact to induce tumor cell electroporation with stromal, vascular, and immunologic sparing. It is also possible that direct or external exposures to non-thermal EM waves or pulsed magnetic fields may generate electromotive forces to engage with unique tumor cell properties, including tumor glycocalyx to induce carcinoma membrane disruption and stress, providing novel avenues to augment tumor antigen release, cross-presentation by tumor-resident immune cells, and anti-tumor immunity. Integration with existing checkpoint inhibitor strategies to boost immunotherapeutic effects in carcinomas may also emerge as a broadly effective strategy, but little has been considered or tested in this area. Unlike the use of chemo/radiation and/or targeted therapies in cancer, EM platforms may allow for the survival of tumor-associated immunologic cells, including naïve and sensitized anti-tumor T cells. Moreover, EM-induced cancer cell stress and apoptosis may potentiate endogenous tumor antigen-specific anti-tumor immunity. Clinical studies examining a few of these combined EM-platform approaches are in their infancy, and a greater thrust in research (including basic, clinical, and translational work) in understanding how EM platforms may integrate with immunotherapy will be critical in driving advances in cancer outcomes under this promising combination.
Collapse
Affiliation(s)
- Mark M. Fuster
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Pulmonary & Critical Care Division, University of California, San Diego, San Diego, CA, United States
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, San Diego, CA, United States
- Veterans Medical Research Foundation, San Diego, CA, United States
| |
Collapse
|
3
|
Nguyen H, Schubert KE, Pohling C, Chang E, Yamamoto V, Zeng Y, Nie Y, Van Buskirk S, Schulte RW, Patel CB. Impact of glioma peritumoral edema, tumor size, and tumor location on alternating electric fields (AEF) therapy in realistic 3D rat glioma models: a computational study. Phys Med Biol 2024; 69:085015. [PMID: 38417178 DOI: 10.1088/1361-6560/ad2e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX, 76706, United States of America
| | | | - Christoph Pohling
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Edwin Chang
- Stanford University, Stanford, CA, 94305, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA, 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE, 19716, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX, 78249, United States of America
| | | | - Chirag B Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, United States of America
| |
Collapse
|
4
|
Olatunji G, Aderinto N, Adefusi T, Kokori E, Akinmoju O, Yusuf I, Olusakin T, Muzammil MA. Efficacy of tumour-treating fields therapy in recurrent glioblastoma: A narrative review of current evidence. Medicine (Baltimore) 2023; 102:e36421. [PMID: 38050252 PMCID: PMC10695547 DOI: 10.1097/md.0000000000036421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Recurrent Glioblastoma presents a formidable challenge in oncology due to its aggressive nature and limited treatment options. Tumour-Treating Fields (TTFields) Therapy, a novel therapeutic modality, has emerged as a promising approach to address this clinical conundrum. This review synthesizes the current evidence surrounding the efficacy of TTFields Therapy in the context of recurrent Glioblastoma. Diverse academic databases were explored to identify relevant studies published within the last decade. Strategic keyword selection facilitated the inclusion of studies focusing on TTFields Therapy's efficacy, treatment outcomes, and patient-specific factors. The review reveals a growing body of evidence suggesting the potential clinical benefits of TTFields Therapy for patients with recurrent Glioblastoma. Studies consistently demonstrate its positive impact on overall survival (OS) and progression-free survival (PFS). The therapy's safety profile remains favorable, with mild to moderate skin reactions being the most commonly reported adverse events. Our analysis highlights the importance of patient selection criteria, with emerging biomarkers such as PTEN mutation status influencing therapy response. Additionally, investigations into combining TTFields Therapy with other treatments, including surgical interventions and novel approaches, offer promising avenues for enhancing therapeutic outcomes. The synthesis of diverse studies underscores the potential of TTFields Therapy as a valuable addition to the armamentarium against recurrent Glioblastoma. The narrative review comprehensively explains the therapy's mechanisms, clinical benefits, adverse events, and future directions. The insights gathered herein serve as a foundation for clinicians and researchers striving to optimize treatment strategies for patients facing the challenging landscape of recurrent Glioblastoma.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Tobi Olusakin
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
5
|
Nguyen H, Schubert KE, Chang E, Nie Y, Pohling C, Van Buskirk S, Yamamoto V, Zeng Y, Schulte RW, Patel CB. Electric field distributions in realistic 3D rat head models during alternating electric field (AEF) therapy: a computational study. Phys Med Biol 2023; 68:205015. [PMID: 37703902 DOI: 10.1088/1361-6560/acf98d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX 76706, United States of America
| | | | - Edwin Chang
- Stanford University, Stanford, CA 94305, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Christoph Pohling
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE 19716, United States of America
| | | | - Chirag B Patel
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States of America
| |
Collapse
|
6
|
Ballo MT, Conlon P, Lavy-Shahaf G, Kinzel A, Vymazal J, Rulseh AM. Association of Tumor Treating Fields (TTFields) therapy with survival in newly diagnosed glioblastoma: a systematic review and meta-analysis. J Neurooncol 2023; 164:1-9. [PMID: 37493865 PMCID: PMC10462574 DOI: 10.1007/s11060-023-04348-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) therapy, an electric field-based cancer treatment, became FDA-approved for patients with newly diagnosed glioblastoma (GBM) in 2015 based on the randomized controlled EF-14 study. Subsequent approvals worldwide and increased adoption over time have raised the question of whether a consistent survival benefit has been observed in the real-world setting, and whether device usage has played a role. METHODS We conducted a literature search to identify clinical studies evaluating overall survival (OS) in TTFields-treated patients. Comparative and single-cohort studies were analyzed. Survival curves were pooled using a distribution-free random-effects method. RESULTS Among nine studies, seven (N = 1430 patients) compared the addition of TTFields therapy to standard of care (SOC) chemoradiotherapy versus SOC alone and were included in a pooled analysis for OS. Meta-analysis of comparative studies indicated a significant improvement in OS for patients receiving TTFields and SOC versus SOC alone (HR: 0.63; 95% CI 0.53-0.75; p < 0.001). Among real-world post-approval studies, the pooled median OS was 22.6 months (95% CI 17.6-41.2) for TTFields-treated patients, and 17.4 months (95% CI 14.4-21.6) for those not receiving TTFields. Rates of gross total resection were generally higher in the real-world setting, irrespective of TTFields use. Furthermore, for patients included in studies reporting data on device usage (N = 1015), an average usage rate of ≥ 75% was consistently associated with prolonged survival (p < 0.001). CONCLUSIONS Meta-analysis of comparative TTFields studies suggests survival may be improved with the addition of TTFields to SOC for patients with newly diagnosed GBM.
Collapse
Affiliation(s)
- Matthew T Ballo
- Department of Radiation Oncology, West Cancer Center, Germantown, TN, USA
| | | | | | | | | | | |
Collapse
|
7
|
Fu M, Zhou Z, Huang X, Chen Z, Zhang L, Zhang J, Hua W, Mao Y. Use of Bevacizumab in recurrent glioblastoma: a scoping review and evidence map. BMC Cancer 2023; 23:544. [PMID: 37316802 PMCID: PMC10265794 DOI: 10.1186/s12885-023-11043-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant primary tumor in the brain, with poor prognosis and limited effective therapies. Although Bevacizumab (BEV) has shown promise in extending progression-free survival (PFS) treating GBM, there is no evidence for its ability to prolong overall survival (OS). Given the uncertainty surrounding BEV treatment strategies, we aimed to provide an evidence map associated with BEV therapy for recurrent GBM (rGBM). METHODS PubMed, Embase, and the Cochrane Library were searched for the period from January 1, 1970, to March 1, 2022, for studies reporting the prognoses of patients with rGBM receiving BEV. The primary endpoints were overall survival (OS) and quality of life (QoL). The secondary endpoints were PFS, steroid use reduction, and risk of adverse effects. A scoping review and an evidence map were conducted to explore the optimal BEV treatment (including combination regimen, dosage, and window of opportunity). RESULTS Patients with rGBM could gain benefits in PFS, palliative, and cognitive advantages from BEV treatment, although the OS benefits could not be verified with high-quality evidence. Furthermore, BEV combined therapy (especially with lomustine and radiotherapy) showed higher efficacy than BEV monotherapy in the survival of patients with rGBM. Specific molecular alterations (IDH mutation status) and clinical features (large tumor burden and double-positive sign) could predict better responses to BEV administration. A low dosage of BEV showed equal efficacy to the recommended dose, but the optimal opportunity window for BEV administration remains unclear. CONCLUSIONS Although OS benefits from BEV-containing regimens could not be verified in this scoping review, the PFS benefits and side effects control supported BEV application in rGBM. Combining BEV with novel treatments like tumor-treating field (TTF) and administration at first recurrence may optimize the therapeutic efficacy. rGBM with a low apparent diffusion coefficient (ADCL), large tumor burden, or IDH mutation is more likely to benefit from BEV treatment. High-quality studies are warranted to explore the combination modality and identify BEV-response subpopulations to maximize benefits.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Huang
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
8
|
Segar DJ, Bernstock JD, Arnaout O, Bi WL, Friedman GK, Langer R, Traverso G, Rampersad SM. Modeling of intracranial tumor treating fields for the treatment of complex high-grade gliomas. Sci Rep 2023; 13:1636. [PMID: 36717682 PMCID: PMC9886948 DOI: 10.1038/s41598-023-28769-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Increasing the intensity of tumor treating fields (TTF) within a tumor bed improves clinical efficacy, but reaching sufficiently high field intensities to achieve growth arrest remains challenging due in part to the insulating nature of the cranium. Using MRI-derived finite element models (FEMs) and simulations, we optimized an exhaustive set of intracranial electrode locations to obtain maximum TTF intensities in three clinically challenging high-grade glioma (HGG) cases (i.e., thalamic, left temporal, brainstem). Electric field strengths were converted into therapeutic enhancement ratios (TER) to evaluate the predicted impact of stimulation on tumor growth. Concurrently, conventional transcranial configurations were simulated/optimized for comparison. Optimized intracranial TTF were able to achieve field strengths that have previously been shown capable of inducing complete growth arrest, in 98-100% of the tumor volumes using only 0.54-0.64 A current. The reconceptualization of TTF as a targeted, intracranial therapy has the potential to provide a meaningful survival benefit to patients with HGG and other brain tumors, including those in surgically challenging, deep, or anatomically eloquent locations which may preclude surgical resection. Accordingly, such an approach may ultimately represent a paradigm shift in the use of TTFs for the treatment of brain cancer.
Collapse
Affiliation(s)
- David J Segar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sumientra M Rampersad
- Department of Physics, University of Massachusetts, Boston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Segar DJ, Bernstock JD, Rampersad S, Bi WL, Arnaout O, Friedman GK, Chiocca EA. Intracranial stimulation for brain cancer-The case for implantable, intracranial tumor treating fields. Neurooncol Adv 2023; 5:vdad100. [PMID: 37706199 PMCID: PMC10496941 DOI: 10.1093/noajnl/vdad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Affiliation(s)
- David J Segar
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts, Boston, Massachusetts, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Shin E, Kang H, Lee H, Lee S, Jeon J, Seong K, Youn H, Youn B. Exosomal Plasminogen Activator Inhibitor-1 Induces Ionizing Radiation-Adaptive Glioblastoma Cachexia. Cells 2022; 11:cells11193102. [PMID: 36231065 PMCID: PMC9564109 DOI: 10.3390/cells11193102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cachexia is a muscle-wasting syndrome that leads to a severely compromised quality of life and increased mortality. A strong association between cachexia and poor prognosis has been demonstrated in intractable cancers, including glioblastoma (GBM). In the present study, it was demonstrated that ionizing radiation (IR), the first-line treatment for GBM, causes cancer cachexia by increasing the exosomal release of plasminogen activator inhibitor-1 (PAI-1) from glioblastoma cells. Exosomal PAI-1 delivered to the skeletal muscle is directly penetrated in the muscles and phosphorylates STAT3 to intensify muscle atrophy by activating muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (Atrogin1); furthermore, it hampers muscle protein synthesis by inhibiting mTOR signaling. Additionally, pharmacological inhibition of PAI-1 by TM5441 inhibited muscle atrophy and rescued muscle protein synthesis, thereby providing survival benefits in a GBM orthotopic xenograft mouse model. In summary, our data delineated the role of PAI-1 in the induction of GBM cachexia associated with radiotherapy-treated GBM. Our data also indicated that targeting PAI-1 could serve as an attractive strategy for the management of GBM following radiotherapy, which would lead to a considerable improvement in the quality of life of GBM patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Jaewan Jeon
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Kimoon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Hyesook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Buhyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264
| |
Collapse
|
11
|
Tumor-Treating Fields in Glioblastomas: Past, Present, and Future. Cancers (Basel) 2022; 14:cancers14153669. [PMID: 35954334 PMCID: PMC9367615 DOI: 10.3390/cancers14153669] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common malignant primary brain tumor. Although the standard of care, including maximal resection, concurrent radiotherapy with temozolomide (TMZ), and adjuvant TMZ, has largely improved the prognosis of these patients, the 5-year survival rate is still < 10%. Tumor-treating fields (TTFields), a noninvasive anticancer therapeutic modality, has been rising as a fourth treatment option for GBMs, as confirmed by recent milestone large-scale phase 3 randomized trials and subsequent real-world data, elongating patient overall survival from 16 months to 21 months. However, the mechanisms of antitumor efficacy, its clinical safety, and potential benefits when combined with other treatment modalities are far from completely elucidated. As an increasing number of studies have recently been published on this topic, we conducted this updated, comprehensive review to establish an objective understanding of the mechanism of action, efficacy, safety, clinical concerns, and future perspectives of TTFields. Abstract Tumor-treating fields (TTFields), a noninvasive and innovative therapeutic approach, has emerged as the fourth most effective treatment option for the management of glioblastomas (GBMs), the most deadly primary brain cancer. According to on recent milestone randomized trials and subsequent observational data, TTFields therapy leads to substantially prolonged patient survival and acceptable adverse events. Clinical trials are ongoing to further evaluate the safety and efficacy of TTFields in treating GBMs and its biological and radiological correlations. TTFields is administered by delivering low-intensity, intermediate-frequency, alternating electric fields to human GBM function through different mechanisms of action, including by disturbing cell mitosis, delaying DNA repair, enhancing autophagy, inhibiting cell metabolism and angiogenesis, and limiting cancer cell migration. The abilities of TTFields to strengthen intratumoral antitumor immunity, increase the permeability of the cell membrane and the blood–brain barrier, and disrupt DNA-damage-repair processes make it a promising therapy when combined with conventional treatment modalities. However, the overall acceptance of TTFields in real-world clinical practice is still low. Given that increasing studies on this promising topic have been published recently, we conducted this updated review on the past, present, and future of TTFields in GBMs.
Collapse
|
12
|
Krigers A, Pinggera D, Demetz M, Kornberger LM, Kerschbaumer J, Thomé C, Freyschlag CF. The Routine Application of Tumor-Treating Fields in the Treatment of Glioblastoma WHO° IV. Front Neurol 2022; 13:900377. [PMID: 35785334 PMCID: PMC9243748 DOI: 10.3389/fneur.2022.900377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction:Tumor-treating fields (TTFs) are a specific local oncological treatment modality in glioblastoma multiforme WHO° IV (GBM). Their mechanism of action is based on the effect of electrical fields interfering with the mitotic activity of malignant cells. Prospective studies have demonstrated efficacy, but TTF benefits are still controversially discussed. This treatment was implemented in our center as the standard of care in January 2016. We thus discuss the current state of the art and our long-term experience in the routine application of TTF.MethodsThe data of 48 patients suffering from GBM and treated with TTF were assessed and compared with previously published studies. Up-to-date information from open sources was evaluated.ResultsA total of 31 males and 17 females harboring a GBM were treated with TTF, between January 2016 and August 2021, in our center. In 98% of cases, TTFs were started within 6 weeks after concomitant radiochemotherapy (Stupp protocol). Mean overall survival was 22.6 months (95% CI: 17.3–27.9). Current indications, benefits, and restrictions were evaluated. Future TTF opportunities and ongoing studies were reviewed.ConclusionTTFs are a feasible and routinely applicable specific oncological treatment option for glioblastoma multiforme WHO° IV. Further research is ongoing to extend the indications and the efficacy of TTF.
Collapse
|
13
|
Cao F, Mikic N, Wong ET, Thielscher A, Korshoej AR. Guidelines for Burr Hole Surgery in Combination With Tumor Treating Fields for Glioblastoma: A Computational Study on Dose Optimization and Array Layout Planning. Front Hum Neurosci 2022; 16:909652. [PMID: 35782043 PMCID: PMC9245346 DOI: 10.3389/fnhum.2022.909652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Tumor treating fields (TTFields) is an anti-cancer technology increasingly used for the treatment of glioblastoma. Recently, cranial burr holes have been used experimentally to enhance the intensity (dose) of TTFields in the underlying tumor region. In the present study, we used computational finite element methods to systematically characterize the impact of the burr hole position and the TTFields transducer array layout on the TTFields distribution calculated in a realistic human head model. We investigated a multitude of burr hole positions and layouts to illustrate the basic principles of optimal treatment planning. The goal of the paper was to provide simple rules of thumb for physicians to use when planning the TTFields in combination with skull remodeling surgery. Our study suggests a number of key findings, namely that (1) burr holes should be placed directly above the region of interest, (2) field enhancement occurs mainly underneath the holes, (3) the ipsilateral array should directly overlap the holes and the contralateral array should be placed directly opposite, (4) arrays in a pair should be placed at far distance and not close to each other to avoid current shunting, and finally (5) rotation arrays around their central normal axis can be done without diminishing the enhancing effect of the burr holes. Minor deviations and adjustments (<3 cm) of arrays reduces the enhancement to some extent although the procedure is still effective in these settings. In conclusion, our study provides simple guiding principles for implementation of dose-enhanced TTFields in combination with burr-holes. Future studies are required to validate our findings in additional models at the patient specific level.
Collapse
Affiliation(s)
- Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eric T. Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, RI, United States
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders Rosendal Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Anders Rosendal Korshoej
| |
Collapse
|
14
|
Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomech Model Mechanobiol 2022; 21:1133-1144. [PMID: 35477828 DOI: 10.1007/s10237-022-01580-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.
Collapse
|
15
|
Efficacy and safety of tumor-treating fields in recurrent glioblastoma: a systematic review and meta-analysis. Acta Neurochir (Wien) 2022; 164:1985-1993. [PMID: 35397674 DOI: 10.1007/s00701-022-05192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Tumor-treating fields (TTF) is a novel cancer treatment that uses alternating electric fields to interfere with tumor cell mitosis. It has been approved by the U.S. food and drug administration for the treatment of recurrent glioblastoma (rGBM). We designed this meta-analysis to evaluate the efficacy and safety of TTF in the treatment of rGBM. METHODS The study was based on the PRISMA guideline. Systematic retrieval was performed in PubMed, Cochrane Library, and Embase databases. The outcomes were overall survival (OS) hazard ratio (HR), 1-year survival rate, and cutaneous toxicity. RESULTS These studies included a total of 1048 rGBM patients who received TTF treatment. The overall survival time between the TTF group and the control group was HR 0.75 ([95%CI 0.63 to 0.89]; P = 0.001). Pooled 1-year overall survival rate and incidence of cutaneous toxicity were 0.47 and 0.48, respectively. Data were insufficient to evaluate the effect of MGMT methylation status and tumor recurrence times on heterogeneity. CONCLUSIONS TTF therapy is effective for recurrent glioblastoma. However, most relevant trials should assess rGBM patient baseline characteristics such as age, KPS, MGMT methylation status, and number of tumor recurrence,. In addition, the risk of rashes caused by long-term wearing of devices should also be considered.
Collapse
|
16
|
Mikic N, Poulsen FR, Kristoffersen KB, Laursen RJ, Guldberg TL, Skjøth-Rasmussen J, Wong ET, Møller S, Dahlrot RH, Sørensen JCH, Korshøj AR. Study protocol for OptimalTTF-2: enhancing Tumor Treating Fields with skull remodeling surgery for first recurrence glioblastoma: a phase 2, multi-center, randomized, prospective, interventional trial. BMC Cancer 2021; 21:1010. [PMID: 34503460 PMCID: PMC8427888 DOI: 10.1186/s12885-021-08709-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND OptimalTTF-2 is a randomized, comparative, multi-center, investigator-initiated, interventional study aiming to test skull remodeling surgery in combination with Tumor Treating Fields therapy (TTFields) and best physicians choice medical oncological therapy for first recurrence in glioblastoma patients. OptimalTTF-2 is a phase 2 trial initiated in November 2020. Skull remodeling surgery consists of five burrholes, each 15 mm in diameter, directly over the tumor resection cavity. Preclinical research indicates that this procedure enhances the effect of Tumor Treating Fields considerably. We recently concluded a phase 1 safety/feasibility trial that indicated improved overall survival and no additional toxicity. This phase 2 trial aims to validate the efficacy of the proposed intervention. METHODS The trial is designed as a comparative, 1:1 randomized, minimax two-stage phase 2 with an expected 70 patients to a maximum sample size of 84 patients. After 12-months follow-up of the first 52 patients, an interim futility analysis will be performed. The two trial arms will consist of either a) TTFields therapy combined with best physicians choice oncological treatment (control arm) or b) skull remodeling surgery, TTFields therapy and best practice oncology (interventional arm). Major eligibility criteria include age ≥ 18 years, 1st recurrence of supratentorial glioblastoma, Karnofsky performance score ≥ 70, focal tumor, and lack of significant co-morbidity. Study design aims to detect a 20% increase in overall survival after 12 months (OS12), assuming OS12 = 40% in the control group and OS12 = 60% in the intervention group. Secondary endpoints include hazard rate ratio of overall survival and progression-free survival, objective tumor response rate, quality of life, KPS, steroid dose, and toxicity. Toxicity, objective tumor response rate, and QoL will be assessed every 3rd month. Endpoint data will be collected at the end of the trial, including the occurrence of suspected unexpected serious adverse reactions (SUSARs), unacceptable serious adverse events (SAEs), withdrawal of consent, or loss-to-follow-up. DISCUSSION New treatment modalities are highly needed for first recurrence glioblastoma. Our proposed treatment modality of skull remodeling surgery, Tumor Treating Fields, and best practice medical oncological therapy may increase overall survival significantly. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0422399 , registered 13. January 2020.
Collapse
Affiliation(s)
- N Mikic
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark.
| | - F R Poulsen
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, 5000, Odense, Denmark
- Clinical Institute BRIDGE (Brain Research InterDisciplinary Guided Excellence), University of Southern Denmark, Winsløwparken 19, 5000, Odense, Denmark
| | - K B Kristoffersen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus, Denmark
| | - R J Laursen
- Department of Neurosurgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - T L Guldberg
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - J Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Inge Lehmanns Vej 6, 2100, København Ø, Denmark
| | - E T Wong
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - S Møller
- Department of Oncology, Rigshospitalet, Blegdamsvej 9, 2100, København Ø, Denmark
| | - R H Dahlrot
- Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000, Odense, Denmark
| | - J C H Sørensen
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark
| | - A R Korshøj
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark
| |
Collapse
|