1
|
Khot S, Mahajan U, Jadhav A, Vaishampayan P, Bagul U, Gadhave D, Gorain B, Kokare C. Nose-to-brain delivery of sorafenib-loaded lipid-based poloxamer-carrageenan nanoemulgel: Formulation and therapeutic investigation in glioblastoma-induced orthotopic rat model. Int J Biol Macromol 2025; 309:142861. [PMID: 40188927 DOI: 10.1016/j.ijbiomac.2025.142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Glioblastoma multiforme (GBM) has a poor clinical prognosis, where conventional treatment offers therapeutic limitations. Therefore, the current study introduces a first-of-its-kind sorafenib (SOR) nanoemulsion (SNE) loaded with poloxamer-carrageenan nanoemulgel (SPCNEG), a novel dual-functional and natural polymer-based payload system for effective intranasal chemotherapeutic administration. The nanoformulation was developed using carrageenan (a natural gelling agent), poloxamer (a mucoadhesive agent), glyceryl caprate as lipid, and Cremophor EL:PEG 400 blend as surfactant system. The improved biopharmaceutical attributes of developed formulations were confirmed from the release experiments, revealing augmentation in drug release from SNE (84.56 ± 3.78 %) and SPCNEG (68.62 ± 4.11 %) up to 3.41- and 8.12-fold compared to plain SOR. The ex vivo experiments showed a similar enhancement in drug permeation. Moreover, the SNE also showed superior performance on glioma cell lines, as indicated by lower IC50 (2.23 μg/mL) than plain SOR (16.61 μg/mL). The pharmacokinetic study revealed a 2.52- and 3.24-fold increase in SNE and SPCNEG brain concentration, respectively, compared to Soranib®. Additionally, a high correlation was also observed between in vitro drug release and in vivo absorption at prespecified time intervals for developed formulations. In conclusion, the current research promising and non-invasive alternative to existing interventions for enhanced brain targeting potential.
Collapse
Affiliation(s)
- Shubham Khot
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Unmesh Mahajan
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Amol Jadhav
- Institute of Applied Biological Research and Development, (IABRD), A division of Nirav Biosolutions Pvt Ltd, Aundh, Pune 411007, Maharashtra, India
| | | | - Uddhav Bagul
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Dnyandev Gadhave
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India.
| |
Collapse
|
2
|
Schettini F, Pineda E, Rocca A, Buché V, Donofrio CA, Mazariegos M, Ferrari B, Tancredi R, Panni S, Cominetti M, Di Somma A, González J, Fioravanti A, Venturini S, Generali D. Identifying the best treatment choice for relapsing/refractory glioblastoma: a systematic review with multiple Bayesian network meta-analyses. Oncologist 2024:oyae338. [PMID: 39674575 DOI: 10.1093/oncolo/oyae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive primary central nervous system tumor characterized by poor outcomes. In case of relapse or progression to adjuvant chemotherapy, there is no univocal preferred regimen for relapsing glioblastoma. METHODS We conducted a systematic review and Bayesian trial-level network meta-analyses (NMA) to identify the regimens associated with the best outcomes. The primary endpoint was overall survival (OS). Secondary endpoints were progression-free survival (PFS) and overall response rates (ORR). We estimated separate treatment rankings based on the surface under the cumulative ranking curve values. Only phase II/III prospective comparative trials were included. RESULTS Twenty-four studies (3733 patients and 27 different therapies) were ultimately included. Twenty-three different regimens were compared for OS, 21 for PFS, and 26 for ORR. When taking lomustine as a common comparator, only regorafenib was likely to be significantly superior in terms of OS (hazard ratio: 0.50, 95% credible interval: 0.33-0.75). Regorafenib was significantly superior to other 16 (69.6%) regimens, including NovoTTF-100A, bevacizumab monotherapy, and several bevacizumab-based combinations. Regarding PFS and ORR, no treatment was clearly superior to the others. CONCLUSIONS This NMA supports regorafenib as one of the best available options for relapsing/refractory glioblastoma. Lomustine, NovoTTF-100A, and bevacizumab emerge as other viable alternative regimens. However, evidence on regorafenib is controversial at best. Moreover, most studies were underpowered, with varying inclusion criteria and primary endpoints, and no longer adapted to the most recent glioblastoma classification. A paradigmatic change in clinical trials' design for relapsing/refractory glioblastoma and more effective treatments are urgently required.
Collapse
Affiliation(s)
- Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, Clinic Barcelona Research Foundation-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), 08036, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, 08036, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, Clinic Barcelona Research Foundation-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Hospital of Cattinara, University of Trieste, Trieste, 34149, Italy
| | - Victoria Buché
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, 26100 Cremona, Italy
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Manuel Mazariegos
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | | | | | - Stefano Panni
- Breast and Brain Unit, ASST Cremona, 26100 Cremona, Italy
| | | | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Josep González
- Department of Neurosurgery, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | | | - Sergio Venturini
- Department of Economic and Social Sciences, Catholic University of Sacred Heart - Cremona Campus, 26100 Cremona, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Breast and Brain Unit, ASST Cremona, 26100 Cremona, Italy
| |
Collapse
|
3
|
Rojas-Salazar Y, Gómez-Montañez E, Rojas-Salazar J, de Anda-Jáuregui G, Hernández-Lemus E. Potential Drug Synergy Through the ERBB2 Pathway in HER2+ Breast Tumors. Int J Mol Sci 2024; 25:12840. [PMID: 39684551 DOI: 10.3390/ijms252312840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
HER2-positive (HER2+) breast cancer is characterized by the overexpression of the ERBB2 (HER2) gene, which promotes aggressive tumor growth and poor prognosis. Targeting the ERBB2 pathway with single-agent therapies has shown limited efficacy due to resistance mechanisms and the complexity of gene interactions within the tumor microenvironment. This study aims to explore potential drug synergies by analyzing gene-drug interactions and combination therapies that target the ERBB2 pathway in HER2+ breast tumors. Using gene co-expression network analysis, we identified 23 metabolic pathways with significant cross-linking of gene interactions, including those involving EGFR tyrosine kinase inhibitors, PI3K, mTOR, and others. We visualized these interactions using Cytoscape to generate individual and combined drug-gene networks, focusing on frequently used drugs such as Erlotinib, Gefitinib, Lapatinib, and Cetuximab. Individual networks highlighted the direct effects of these drugs on their target genes and neighboring genes within the ERBB2 pathway. Combined drug networks, such as those for Cetuximab with Lapatinib, Cetuximab with Erlotinib, and Erlotinib with Lapatinib, revealed potential synergies that could enhance therapeutic efficacy by simultaneously influencing multiple genes and pathways. Our findings suggest that a network-based approach to analyzing drug combinations provides valuable insights into the molecular mechanisms of HER2+ breast cancer and offers promising strategies for overcoming drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Yareli Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Emiliano Gómez-Montañez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Jorge Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores e Investigadoras por Mexico Program, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Smerdi D, Moutafi M, Kotsantis I, Stavrinou LC, Psyrri A. Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data. Life (Basel) 2024; 14:673. [PMID: 38929657 PMCID: PMC11204771 DOI: 10.3390/life14060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.
Collapse
Affiliation(s)
- Dimitra Smerdi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Myrto Moutafi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Lampis C. Stavrinou
- Department of Neurosurgery and Neurotraumatology, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
5
|
Alcaniz J, Winkler L, Dahlmann M, Becker M, Orthmann A, Haybaeck J, Krassnig S, Skofler C, Kratzsch T, Kuhn SA, Jödicke A, Linnebacher M, Fichtner I, Walther W, Hoffmann J. Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures. Front Oncol 2023; 13:1129627. [PMID: 37114125 PMCID: PMC10126369 DOI: 10.3389/fonc.2023.1129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) heterogeneity, aggressiveness and infiltrative growth drastically limit success of current standard of care drugs and efficacy of various new therapeutic approaches. There is a need for new therapies and models reflecting the complex biology of these tumors to analyze the molecular mechanisms of tumor formation and resistance, as well as to identify new therapeutic targets. We established and screened a panel of 26 patient-derived subcutaneous (s.c.) xenograft (PDX) GBM models on immunodeficient mice, of which 15 were also established as orthotopic models. Sensitivity toward a drug panel, selected for their different modes of action, was determined. Best treatment responses were observed for standard of care temozolomide, irinotecan and bevacizumab. Matching orthotopic models frequently show reduced sensitivity, as the blood-brain barrier limits crossing of the drugs to the GBM. Molecular characterization of 23 PDX identified all of them as IDH-wt (R132) with frequent mutations in EGFR, TP53, FAT1, and within the PI3K/Akt/mTOR pathway. Their expression profiles resemble proposed molecular GBM subtypes mesenchymal, proneural and classical, with pronounced clustering for gene sets related to angiogenesis and MAPK signaling. Subsequent gene set enrichment analysis identified hallmark gene sets of hypoxia and mTORC1 signaling as enriched in temozolomide resistant PDX. In models sensitive for mTOR inhibitor everolimus, hypoxia-related gene sets reactive oxygen species pathway and angiogenesis were enriched. Our results highlight how our platform of s.c. GBM PDX can reflect the complex, heterogeneous biology of GBM. Combined with transcriptome analyses, it is a valuable tool in identification of molecular signatures correlating with monitored responses. Available matching orthotopic PDX models can be used to assess the impact of the tumor microenvironment and blood-brain barrier on efficacy. Our GBM PDX panel therefore represents a valuable platform for screening regarding molecular markers and pharmacologically active drugs, as well as optimizing delivery of active drugs to the tumor.
Collapse
Affiliation(s)
- Joshua Alcaniz
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- *Correspondence: Joshua Alcaniz,
| | - Lars Winkler
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Andrea Orthmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Johannes Haybaeck
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Krassnig
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Tobias Kratzsch
- Department of Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne A. Kuhn
- Department of Neurosurgery, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Andreas Jödicke
- Department of Neurosurgery, Vivantes Hospital Berlin Neukölln, Berlin, Germany
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Rostock, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| |
Collapse
|
6
|
Schwark K, Messinger D, Cummings JR, Bradin J, Kawakibi A, Babila CM, Lyons S, Ji S, Cartaxo RT, Kong S, Cantor E, Koschmann C, Yadav VN. Receptor tyrosine kinase (RTK) targeting in pediatric high-grade glioma and diffuse midline glioma: Pre-clinical models and precision medicine. Front Oncol 2022; 12:922928. [PMID: 35978801 PMCID: PMC9376238 DOI: 10.3389/fonc.2022.922928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric high-grade glioma (pHGG), including both diffuse midline glioma (DMG) and non-midline tumors, continues to be one of the deadliest oncologic diagnoses (both henceforth referred to as “pHGG”). Targeted therapy options aimed at key oncogenic receptor tyrosine kinase (RTK) drivers using small-molecule RTK inhibitors has been extensively studied, but the absence of proper in vivo modeling that recapitulate pHGG biology has historically been a research challenge. Thankfully, there have been many recent advances in animal modeling, including Cre-inducible transgenic models, as well as intra-uterine electroporation (IUE) models, which closely recapitulate the salient features of human pHGG tumors. Over 20% of pHGG have been found in sequencing studies to have alterations in platelet derived growth factor-alpha (PDGFRA), making growth factor modeling and inhibition via targeted tyrosine kinases a rich vein of interest. With commonly found alterations in other growth factors, including FGFR, EGFR, VEGFR as well as RET, MET, and ALK, it is necessary to model those receptors, as well. Here we review the recent advances in murine modeling and precision targeting of the most important RTKs in their clinical context. We additionally provide a review of current work in the field with several small molecule RTK inhibitors used in pre-clinical or clinical settings for treatment of pHGG.
Collapse
Affiliation(s)
- Kallen Schwark
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Dana Messinger
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Jessica R. Cummings
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Joshua Bradin
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Abed Kawakibi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Clarissa M. Babila
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Samantha Lyons
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sunjong Ji
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Rodrigo T. Cartaxo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Seongbae Kong
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Evan Cantor
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Viveka Nand Yadav
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
- Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, MO, United States
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas, MO, United States
- *Correspondence: Viveka Nand Yadav,
| |
Collapse
|
7
|
Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021; 22:ijms221810005. [PMID: 34576168 PMCID: PMC8470251 DOI: 10.3390/ijms221810005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence:
| | - József Virga
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|