1
|
Taori S, Habib A, Adida S, Gecici NN, Sharma N, Calcaterra M, Tang A, Pandya S, Mehra A, Deng H, Elidrissy H, Idrissi YA, Amjadzadeh M, Zinn PO. Circulating biomarkers in high-grade gliomas: current insights and future perspectives. J Neurooncol 2025; 172:41-49. [PMID: 39671020 DOI: 10.1007/s11060-024-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE High-grade gliomas (HGG) represent a challenging subset of brain tumors characterized by aggressive nature and poor prognosis. Histopathology remains to be the standard for diagnosis, however, it is invasive, prone to sampling errors, and may not capture the full tumor heterogeneity and evolution over time. In recent years, there has been a growing interest in the potential utility of circulating biomarkers, obtained through minimally-invasive liquid biopsies, providing an opportunity for diagnosis, prognostication, monitoring treatment response and developing targeted therapies. METHODS We have reviewed the literature on circulating biomarkers for HGG, including circulating tumor cells (CTCs), circulating tumor-derived exosomes/extracellular vesicles (ctEVs), circulating tumor-derived DNA (ctDNA), circulating tumor-derived miRNA (ctmiRNA), and circulating tumor-derived proteins. RESULTS CTCs provide real-time information about tumor characteristics for molecular profiling and monitoring treatment response, yet their low numbers in circulation makes detection challenging. ctEVs carry a range of biomolecules and are easily detectable. However, they are not exclusively released from tumor cells and heterogeneity in their content requires standardized isolation and analysis methods. ctDNA is another promising biomarker with its levels correlating with the disease stage. However, its low concentration in blood requires highly sensitive techniques for identification and differentiation from normal cell-free DNA. ctmiRNA and tumor-derived proteins show promise but are limited by their susceptibility to dilution and lack of specificity in current technology. CONCLUSION This review highlights the transformative potential of circulating biomarkers in the management of HGG, with implications for improving patient outcomes, optimizing treatment strategies, and advancing precision oncology in neuro-oncology practice.
Collapse
Affiliation(s)
- Suchet Taori
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Ahmed Habib
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Samuel Adida
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Nikhil Sharma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | | | - Anthony Tang
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Sumaarg Pandya
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Arnav Mehra
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Hayat Elidrissy
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Yassine Alami Idrissi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Mohammadreza Amjadzadeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Pascal O Zinn
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA.
| |
Collapse
|
2
|
Charifa A, Agersborg S, Mohtashamian A, Ip A, Goy A, Albitar M. Liquid biopsy for evaluating mutations and chromosomal aberrations in cerebrospinal fluid from patients with primary or metastatic CNS tumors. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100281. [PMID: 40027311 PMCID: PMC11863705 DOI: 10.1016/j.jlb.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Background Cytopathology analysis of cerebrospinal fluid (CSF) is limited in detecting tumors in patients with suspected primary or metastatic central nervous system (CNS) malignancy. We investigated the use of CSF liquid biopsy (LBx) to detect neoplastic processes in the CNS. Methods Cell-free DNA (cfDNA) from the CSF of patients with suspected metastatic (N = 106) or primary CNS (N = 23) tumors was deep sequenced using a 302-gene panel. Results Four samples (3 %) (3 metastatic and 1 primary) failed sequencing quality control criteria. Metastatic tumor was confirmed in 84 (82 %) of the 103 patients suspected of metastatic tumor. Primary CNS tumor was confirmed in 11 of 22 (50 %) patients suspected of CNS tumor. Chromosomal abnormalities were detected in 55 samples (54 %). Germline mutations were detected in 23 (22 %) patients with metastatic tumors and in 1 (5 %) with a primary CNS tumor. Of the 29 patients with metastatic breast cancers, 2 (7 %) had mutations in ESR1 and 9 (31 %) had mutations in PIK3CA. Of the 21 patients with metastatic lung cancer, 9 (43 %) had EGFR mutations and 5 (24 %) had KRAS mutations. Upon comparing CSF LBx with peripheral blood LBx in 14 patients, 13 (93 %) showed only CHIP and one patient showed CNS primary tumor mutation. Serial samples from 14 patients demonstrate that CSF LBx can be used for monitoring therapy efficacy. Conclusions LBx using CSF is clinically reliable and provides informative results in a substantial proportion of patients with metastatic CNS tumors and to a lesser degree in patients with primary CNS tumors.
Collapse
Affiliation(s)
| | | | | | - Andrew Ip
- John Theurer Cancer Center, Hackensack, NJ, USA
| | - Andre Goy
- John Theurer Cancer Center, Hackensack, NJ, USA
| | | |
Collapse
|
3
|
Meng Y, Pople CB, Lipsman N. The Use of Focused Ultrasound to Enhance Liquid Biopsy. Magn Reson Imaging Clin N Am 2024; 32:699-704. [PMID: 39322358 DOI: 10.1016/j.mric.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breakthroughs in medical imaging and ultrasound transducer design have led to feasible application of focused ultrasound (FUS) to intracranial pathologies. Currently, one of the most active fields in FUS has been the temporary disruption the blood-brain barrier. In addition to enhancing drug delivery to the brain, FUS blood-brain barrier disruption may allow liberation of biomarkers from the brain, thus facilitating ease of detection and adding the element of spatial specificity to an otherwise nonspecific test. This study reviews the current evidence to support FUS liquid biopsy and the challenges of advancing this field.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto Canada, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto Canada, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto Canada, 2075 Bayview Avenue, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Phillips KA, Kamson DO, Schiff D. Disease Assessments in Patients with Glioblastoma. Curr Oncol Rep 2023; 25:1057-1069. [PMID: 37470973 DOI: 10.1007/s11912-023-01440-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE OF REVIEW The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.
Collapse
Affiliation(s)
- Kester A Phillips
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute, 550 17Th Ave Suite 540, Seattle, WA, 98122, USA
| | - David O Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 201 North Broadway, Skip Viragh Outpatient Cancer Building, 9Th Floor, Room 9177, Mailbox #3, Baltimore, MD, 21218, USA
| | - David Schiff
- Division of Neuro-Oncology, University of Virginia Health System, 1300 Jefferson Park Avenue, West Complex, Room 6225, Charlottesville, VA, 22903, USA.
| |
Collapse
|
5
|
Miller AM, Karajannis MA. Cerebrospinal fluid: The new frontier for methylome-based diagnostic classification of brain tumors. Neuro Oncol 2023; 25:1461-1462. [PMID: 37078878 PMCID: PMC10398800 DOI: 10.1093/neuonc/noad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | |
Collapse
|