1
|
Vogl TJ, Stein LV, Rödel C, Bielfeldt J, Adwan H. Efficacy and safety of intra-arterial chemoperfusion as palliative treatment of symptomatic primary brain malignancies. J Neuroradiol 2025; 52:101351. [PMID: 40379097 DOI: 10.1016/j.neurad.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND To retrospectively analyze the safety and efficacy of intra-arterial chemoperfusion (IAC) for symptomatic patients with recurrent or post-therapeutic progressive primary malignant brain tumors in regard to safety, survival and therapy response as a palliative treatment. METHODS Thirty-nine patients (24 men, 15 women; mean age: 52) who were treated by IAC in 181 sessions (mean: 4.6 sessions/patient) were enrolled and evaluated in this study. Out of total 39 patients with primary malignant brain tumor, 27 (69 %) were diagnosed with glioblastoma. The overall survival (OS) was calculated using the Kaplan-Meier method. Therapy response was determined according to RECIST 1.1. RESULTS All IAC treatments were performed without major adverse events or treatment-related deaths. The median OS time was 10.3 months (95 %CI: 0.6 - 19.9). The median PFS time was 5.9 months (95 %CI: 3.6 - 8.3). The rate of partial response was 10.8 % (4/37) and stable disease was achieved in 56.8 % (21/37) of patients. Progressive disease was observed in 32.4 % of cases (12/37). There were no cases of complete response. In two cases RECIST could not be analyzed due to loss of radiological follow-up. CONCLUSION This study could show that IAC may serve as a safe palliative strategy for symptomatic patients with recurrent or post-therapeutic progressive primary malignant brain tumors.
Collapse
Affiliation(s)
- Thomas J Vogl
- Clinic for Radiology and Nuclear Medicine, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7 60590, Frankfurt Am Main, Germany
| | - Leon Vincent Stein
- Clinic for Radiology and Nuclear Medicine, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7 60590, Frankfurt Am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7 60590, Frankfurt Am Main, Germany
| | - John Bielfeldt
- Clinic for Radiology and Nuclear Medicine, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7 60590, Frankfurt Am Main, Germany
| | - Hamzah Adwan
- Clinic for Radiology and Nuclear Medicine, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Latulippe J, Roy LO, Gobeil F, Fortin D. Optimization of Intra-Arterial Administration of Chemotherapeutic Agents for Glioblastoma in the F98-Fischer Glioma-Bearing Rat Model. Biomolecules 2025; 15:421. [PMID: 40149957 PMCID: PMC11940523 DOI: 10.3390/biom15030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood-brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At relapse, there is no recognized standard second-line treatment. Our team uses intra-arterial (IA) chemotherapy as a means to bypass the BBB, hence achieving an overall median survival of 25 months. However, most patients eventually fail the treatment and progress. This is why we wish to expand our portfolio of options in terms of chemotherapy agents available for IA administration. In this study, we tested topotecan, cytarabine, and new formulations of carboplatin and paclitaxel by IA administration in the F98-Fischer glioma-bearing rat model as a screening tool for identifying potential candidate drugs. The topotecan IA group showed increased survival compared to the intravenous (IV) group (29.0 vs. 23.5), whereas the IV cytarabine group survived longer than the IA group (26.5 vs. 22.5). The new formulation of carboplatin showed a significant increase in survival compared to two previous studies with the conventional form (37.5 vs. 26.0 and 30.0). As for paclitaxel, it was too neurotoxic for IA administration. Topotecan and the new formulation of carboplatin demonstrated significant results, warranting their transition for consideration in clinical trials.
Collapse
Affiliation(s)
- Juliette Latulippe
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (J.L.); (F.G.)
| | - Laurent-Olivier Roy
- Division of Neurosurgery, Department of Surgery, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (J.L.); (F.G.)
| | - David Fortin
- Division of Neurosurgery, Department of Surgery, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
3
|
Nonnenbroich LF, Bouchal SM, Millesi E, Rechberger JS, Khatua S, Daniels DJ. H3K27-Altered Diffuse Midline Glioma of the Brainstem: From Molecular Mechanisms to Targeted Interventions. Cells 2024; 13:1122. [PMID: 38994974 PMCID: PMC11240752 DOI: 10.3390/cells13131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.
Collapse
Affiliation(s)
- Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Hopp Children’s Cancer Center, Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Elena Millesi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Lin C, Smith C, Rutka J. Current immunotherapeutic approaches to diffuse intrinsic pontine glioma. Front Genet 2024; 15:1349612. [PMID: 38774284 PMCID: PMC11106442 DOI: 10.3389/fgene.2024.1349612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumour that occurs in the pons of the brainstem and accounts for over 80% of all brainstem gliomas. The median age at diagnosis is 6-7 years old, with less than 10% overall survival 2 years after diagnosis and less than 1% after 5 years. DIPGs are surgically inaccessible, and radiation therapy provides only transient benefit, with death ensuing from relentless local tumour infiltration. DIPGs are now the leading cause of brain tumour deaths in children, with a societal cancer burden in years of life lost (YLL) of more than 67 per individual, versus approximately 14 and 16 YLL for lung and breast cancer respectively. More than 95 clinical drug trials have been conducted on children with DIPGs, and all have failed to improve survival. No single or combination chemotherapeutic strategy has been successful to date because of our inability to identify targeted drugs for this disease and to deliver these drugs across an intact blood-brain barrier (BBB). Accordingly, there has been an increased focus on immunotherapy research in DIPG, with explorations into treatments such as chimeric antigen receptor T (CAR-T) cells, immune checkpoint blockades, cancer vaccines, and autologous cell transfer therapy. Here, we review the most recent advances in identifying genetic factors influencing the development of immunotherapy for DIPG. Additionally, we explore emerging technologies such as Magnetic Resonance-guided Focused Ultrasound (MRgFUS) in potential combinatorial approaches to treat DIPG.
Collapse
Affiliation(s)
- Catherine Lin
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Narsinh KH, Perez E, Haddad AF, Young JS, Savastano L, Villanueva-Meyer JE, Winkler E, de Groot J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024; 24:123-139. [PMID: 38578405 PMCID: PMC11016125 DOI: 10.1007/s11910-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Edgar Perez
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Luis Savastano
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John de Groot
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|