1
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
2
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
3
|
Guo X, Shi Y, Liu D, Li Y, Chen W, Wang Y, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Guo S, Li H, Yang T, Zhang K, Wang Y, Ma W. Clinical updates on gliomas and implications of the 5th edition of the WHO classification of central nervous system tumors. Front Oncol 2023; 13:1131642. [PMID: 36998447 PMCID: PMC10043404 DOI: 10.3389/fonc.2023.1131642] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundThe 5th edition of the World Health Organization (WHO) classification of central nervous system tumors incorporated specific molecular alterations into the categorization of gliomas. The major revision of the classification scheme effectuates significant changes in the diagnosis and management of glioma. This study aimed to depict the clinical, molecular, and prognostic characteristics of glioma and its subtypes according to the current WHO classification.MethodsPatients who underwent surgery for glioma at Peking Union Medical College Hospital during 11 years were re-examined for tumor genetic alterations using next-generation sequencing, polymerase chain reaction-based assay, and fluorescence in situ hybridization methods and enrolled in the analysis.ResultsThe enrolled 452 gliomas were reclassified into adult-type diffuse glioma (ntotal=373; astrocytoma, n=78; oligodendroglioma, n=104; glioblastoma, n=191), pediatric-type diffuse glioma (ntotal=23; low-grade, n=8; high-grade, n=15), circumscribed astrocytic glioma (n=20), and glioneuronal and neuronal tumor (n=36). The composition, definition, and incidence of adult- and pediatric-type gliomas changed significantly between the 4th and the 5th editions of the classification. The clinical, radiological, molecular, and survival characteristics of each subtype of glioma were identified. Alterations in CDK4/6, CIC, FGFR2/3/4, FUBP1, KIT, MET, NF1, PEG3, RB1, and NTRK2 were additional factors correlated with the survival of different subtypes of gliomas.ConclusionsThe updated WHO classification based on histology and molecular alterations has updated our understanding of the clinical, radiological, molecular, survival, and prognostic characteristics of varied subtypes of gliomas and provided accurate guidance for diagnosis and potential prognosis for patients.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ’4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- ’4+4’ Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
- *Correspondence: Yu Wang, ; Wenbin Ma,
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
- *Correspondence: Yu Wang, ; Wenbin Ma,
| |
Collapse
|
4
|
Métais A, Tauziède-Espariat A, Garcia J, Appay R, Uro-Coste E, Meyronet D, Maurage CA, Vandenbos F, Rigau V, Chiforeanu DC, Pallud J, Senova S, Saffroy R, Colin C, Edjlali M, Varlet P, Figarella-Branger D, Godfraind C, Gauchotte G, Mokhtari K, Bielle F, Escande F, Fina F. Clinico-pathological and epigenetic heterogeneity of diffuse gliomas with FGFR3::TACC3 fusion. Acta Neuropathol Commun 2023; 11:14. [PMID: 36647073 PMCID: PMC9843943 DOI: 10.1186/s40478-023-01506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Gliomas with FGFR3::TACC3 fusion mainly occur in adults, display pathological features of glioblastomas (GB) and are usually classified as glioblastoma, IDH-wildtype. However, cases demonstrating pathological features of low-grade glioma (LGG) lead to difficulties in classification and clinical management. We report a series of 8 GB and 14 LGG with FGFR3:TACC3 fusion in order to better characterize them. METHODS Centralized pathological examination, search for TERT promoter mutation and DNA-methylation profiling were performed in all cases. Search for prognostic factors was done by the Kaplan-Meir method. RESULTS TERT promoter mutation was recorded in all GB and 6/14 LGG. Among the 7 cases with a methylation score > 0.9 in the classifier (v12.5), 2 were classified as glioblastoma, 4 as ganglioglioma (GG) and 1 as dysembryoplastic neuroepithelial tumor (DNET). t-SNE analysis showed that the 22 cases clustered into three groups: one included 12 cases close to glioblastoma, IDH-wildtype methylation class (MC), 5 cases each clustered with GG or DNET MC but none with PLNTY MC. Unsupervised clustering analysis revealed four groups, two of them being clearly distinct: 5 cases shared age (< 40), pathological features of LGG, lack of TERT promoter mutation, FGFR3(Exon 17)::TACC3(Exon 10) fusion type and LGG MC. In contrast, 4 cases shared age (> 40), pathological features of glioblastoma, and were TERT-mutated. Relevant factors associated with a better prognosis were age < 40 and lack of TERT promoter mutation. CONCLUSION Among gliomas with FGFR3::TACC3 fusion, age, TERT promoter mutation, pathological features, DNA-methylation profiling and fusion subtype are of interest to determine patients' risk.
Collapse
Affiliation(s)
- Alice Métais
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, service de Neuropathologie, Paris, France ,grid.5842.b0000 0001 2171 2558Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Equipe IMA-BRAIN (Imaging Biomarkers for Brain Development and Disorders), Université de Paris, Paris, France
| | - Arnault Tauziède-Espariat
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, service de Neuropathologie, Paris, France ,grid.5842.b0000 0001 2171 2558Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Equipe IMA-BRAIN (Imaging Biomarkers for Brain Development and Disorders), Université de Paris, Paris, France
| | - Jeremy Garcia
- grid.411266.60000 0001 0404 1115APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Romain Appay
- grid.411266.60000 0001 0404 1115APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France ,grid.464051.20000 0004 0385 4984Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Emmanuelle Uro-Coste
- grid.411175.70000 0001 1457 2980Department of Pathology, Toulouse University Hospital, Toulouse, France
| | - David Meyronet
- grid.413852.90000 0001 2163 3825Groupe Hospitalier Est, Département de Neuropathologie, Hospices Civils de Lyon, Bron, France ,grid.7849.20000 0001 2150 7757Claude Bernard University Lyon 1, Lyon, France ,grid.462282.80000 0004 0384 0005Department of Cancer cell plasticity – INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| | - Claude-Alain Maurage
- grid.410463.40000 0004 0471 8845Department of Pathology, Lille University Hospital, Lille, France
| | - Fanny Vandenbos
- grid.464719.90000 0004 0639 4696Department of Neuropathology, Hôpital Pasteur, Nice, France
| | - Valérie Rigau
- grid.121334.60000 0001 2097 0141Department of Pathology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Dan Christian Chiforeanu
- grid.414271.5Service d’Anatomie et Cytologie Pathologiques, Pontchaillou University Hospital, Rennes, France
| | - Johan Pallud
- grid.5842.b0000 0001 2171 2558Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Equipe IMA-BRAIN (Imaging Biomarkers for Brain Development and Disorders), Université de Paris, Paris, France ,Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Suhan Senova
- grid.50550.350000 0001 2175 4109Departments of Neurosurgery and Psychiatry, Assistance Publique-Hôpitaux de Paris (APHP) Groupe Henri-Mondor Albert-Chenevier, Créteil, France
| | - Raphaël Saffroy
- grid.413133.70000 0001 0206 8146Department of Biochemistry and Oncogenetic, APHP, Paul-Brousse Hospital, Villejuif, France
| | - Carole Colin
- grid.464051.20000 0004 0385 4984Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Myriam Edjlali
- grid.460789.40000 0004 4910 6535Department of Radiology, APHP, Hôpitaux Raymond-Poincaré and Ambroise Paré, DMU Smart Imaging, U 1179 UVSQ/Paris-Saclay, GH Université Paris-Saclay, Paris, France ,grid.503243.3Laboratoire d’imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, Site Sainte-Anne, service de Neuropathologie, Paris, France ,grid.5842.b0000 0001 2171 2558Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Equipe IMA-BRAIN (Imaging Biomarkers for Brain Development and Disorders), Université de Paris, Paris, France
| | - Dominique Figarella-Branger
- grid.411266.60000 0001 0404 1115APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France ,grid.464051.20000 0004 0385 4984Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Moes-Sosnowska J, Skupinska M, Lechowicz U, Szczepulska-Wojcik E, Skronska P, Rozy A, Stepniewska A, Langfort R, Rudzinski P, Orlowski T, Popiel D, Stanczak A, Wieczorek M, Chorostowska-Wynimko J. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231810506. [PMID: 36142417 PMCID: PMC9505002 DOI: 10.3390/ijms231810506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
While fibroblast growth factor receptors (FGFRs) are involved in several biological pathways and FGFR inhibitors may be useful in the treatment of squamous non-small cell lung cancer (Sq-NSCLC), FGFR aberrations are not well characterized in Sq-NSCLC. We comprehensively evaluated FGFR expression, fusions, and variants in 40 fresh-frozen primary Sq-NSCLC (stage IA3−IV) samples and tumor-adjacent normal tissues using real-time PCR and next-generation sequencing (NGS). Protein expression of FGFR1−3 and amplification of FGFR1 were also analyzed. FGFR1 and FGFR4 median gene expression was significantly (p < 0.001) decreased in tumors compared with normal tissue. Increased FGFR3 expression enhanced the recurrence risk (hazard ratio 4.72, p = 0.029), while high FGFR4 expression was associated with lymph node metastasis (p = 0.036). Enhanced FGFR1 gene expression was correlated with FGFR1 protein overexpression (r = 0.75, p = 0.0003), but not with FGFR1 amplification. NGS revealed known pathogenic FGFR2,3 variants, an FGFR3::TACC3 fusion, and a novel TACC1::FGFR1 fusion together with FGFR1,2 variants of uncertain significance not previously reported in Sq-NSCLC. These findings expand our knowledge of the Sq-NSCLC molecular background and show that combining different methods increases the rate of FGFR aberrations detection, which may improve patient selection for FGFRi treatment.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Microtubule-Associated Proteins
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 4/genetics
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Monika Skupinska
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Ewa Szczepulska-Wojcik
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Aneta Stepniewska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Piotr Rudzinski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Tadeusz Orlowski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
- Correspondence: or
| |
Collapse
|
6
|
FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23158675. [PMID: 35955806 PMCID: PMC9369421 DOI: 10.3390/ijms23158675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein—FGFR3-TACC3 fusion—is prevalent in 3–4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.
Collapse
|
7
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|