1
|
Contreras K, Velez-Varela PE, Casanova-Carvajal O, Alvarez AL, Urbano-Bojorge AL. A Review of Artificial Intelligence-Based Systems for Non-Invasive Glioblastoma Diagnosis. Life (Basel) 2025; 15:643. [PMID: 40283197 PMCID: PMC12028570 DOI: 10.3390/life15040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive brain tumor with a poor prognosis. Traditional diagnosis relies on invasive biopsies, which pose surgical risks. Advances in artificial intelligence (AI) and machine learning (ML) have improved non-invasive GBM diagnosis using magnetic resonance imaging (MRI), offering potential advantages in accuracy and efficiency. OBJECTIVE This review aims to identify the methodologies and technologies employed in AI-based GBM diagnostics. It further evaluates the performance of AI models using standard metrics, highlighting both their strengths and limitations. METHODOLOGY In accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a systematic review was conducted across major academic databases. A total of 104 articles were identified in the initial search, and 15 studies were selected for final analysis after applying inclusion and exclusion criteria. OUTCOMES The included studies indicated that the signal T1-weighted imaging (T1WI) is the most frequently used MRI modality in AI-based GBM diagnostics. Multimodal approaches integrating T1WI with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) have demonstrated improved classification performance. Additionally, AI models have shown potential in surpassing conventional diagnostic methods, enabling automated tumor classification and enhancing prognostic predictions.
Collapse
Affiliation(s)
- Kebin Contreras
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| | - Patricia E. Velez-Varela
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| | - Oscar Casanova-Carvajal
- Centro de Tecnología Biomédica, Campus de Montegancedo, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial ETSIDI, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Angel Luis Alvarez
- Escuela de Ingeniería de Fuenlabrada, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Ana Lorena Urbano-Bojorge
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia
| |
Collapse
|
2
|
An JM, Lim YJ, Yeo SG, Kim YH, Kim D. Recent Advances of Nitrobenzoselenadiazole for Imaging and Therapy. ACS Sens 2025; 10:1709-1721. [PMID: 40063118 PMCID: PMC11959591 DOI: 10.1021/acssensors.4c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
The development and practical applications of multifunctional organic fluorophores have garnered significant attention in translational research in recent years. Among the fluorophores, nitrobenzodioxazole (NBD) has been widely used in various fields due to its small size and neutral character, both of which are advantageous for biorelated applications. However, NBD presents some limitations, including (1) suboptimal photophysical properties for in vivo applications and (2) its monofunctional nature, which restricts its use in fluorescence-based bioimaging and sensing. To overcome these challenges, recent research has focused on the development of nitrobenzoselenadiazole (NBSD) derivatives, a selenium analog of NBD. In this review article, we systematically summarize recent advancements in the development of NBSD and highlight examples of its application in translational research as a multifunctional organic fluorophore. We also explore the potential applications of NBSD and present representative case studies, providing valuable context for the ongoing development of new NBSD derivatives in the field of fluorophore-related material science.
Collapse
Affiliation(s)
- Jong Min An
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yeon Jin Lim
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Seung Geun Yeo
- Department
of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic
of Korea
| | - Dokyoung Kim
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Medical Research
Center for Bioreaction to Reactive Oxygen Species and Biomedical Science
Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic
of Korea
| |
Collapse
|
3
|
Haemmerli J, Khatchatourov S, Chaboudez E, Roth L, Sandralegar A, Janssen I, Migliorini D, Schaller K, Bijlenga P. Surgical and clinical impacts of mixed reality-guided glioblastoma resection versus standard neuronavigation: improving tumor surgery. Front Oncol 2025; 15:1551937. [PMID: 40190553 PMCID: PMC11968386 DOI: 10.3389/fonc.2025.1551937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Background Glioblastomas (GBM) are typically treated with surgery and radio-chemotherapy, with patient survival often depending on the extent of tumor resection. This study compares outcomes of GBM surgery using 5-ALA, intraoperative neuroelectrophysiology, and neuro-navigation, either in a standard setting (STD) or enhanced by mixed reality (MR) guidance. Methods This retrospective study included GBM patients who underwent resection at Geneva University Hospitals between 2015 and mid-2022, excluding biopsies and partial debulking. Primary outcomes included postoperative residual tumor volume (RV) based on postoperative contrast uptake on the MRI, while secondary outcomes were gross total resection (GTR), extent of resection (EOR), new postoperative deficits, overall survival (OS), progression-free survival (PFS), and Karnofsky performance scores. Confounding factors such as intraoperative monitoring and use of fluorescence were analyzed. Results Of 115 patients, 76 were in the STD group and 39 in the MR group, with comparable demographics. The MR group had significantly lower RV (median 0.01 cm³ vs. 0.34 cm³, p=0.008) and higher GTR rates (median 50% vs. 26.7%). EOR was also superior in the MR group (median 99.9% vs. 98.2%, p=0.002). New focal deficits occurred in 39% (STD) and 36% (MR) of cases (p=0.84). While median OS was not significantly different (475 vs. 375 days, p=0.63), median PFS was longer in the MR group (147 vs. 100 days, p=0.004). Conclusion MR guidance improves the quality of tumor resection and enhances progression-free survival without increasing postoperative deficits, although it does not significantly impact overall survival.
Collapse
Affiliation(s)
- Julien Haemmerli
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | | | - Etienne Chaboudez
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Leonard Roth
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Insa Janssen
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Daoust F, Dallaire F, Tavera H, Ember K, Guiot MC, Petrecca K, Leblond F. Preliminary study demonstrating cancer cells detection at the margins of whole glioblastoma specimens with Raman spectroscopy imaging. Sci Rep 2025; 15:6453. [PMID: 39987144 PMCID: PMC11846850 DOI: 10.1038/s41598-025-87109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
Intraoperative Raman spectroscopy uses near-infrared laser light to gain molecular information without causing damage. It can be used in vivo or ex vivo without exogenous contrast agents. Clinically, the technique was primarily used with machine learning for in situ tumor detection with fiberoptics probes analyzing tissue at sub-millimeter scales one point at the time. Here we report the development of a whole-specimen spectroscopic imaging system designed to detect cancer cells at the margins of surgical specimens. The system has a field of view covering a square area of side one centimeter with a pixel size of a quarter of a millimeter . First, a tumor detection model was developed from data acquired using a point-probe in 24 glioblastoma patients that had a detection sensitivity of 90% and a specificity of 95%. That model was then used to produce cancer prediction maps of nine glioblastoma specimens from five patients with validation based on histopathology analyses. The results preliminarily demonstrate the instrument was able to detect tissue areas associated with cancer cells from the Raman peaks associated with the amino acids phenylalanine and tryptophan as well as the relative concentration of lipids and proteins linked with deformations of the CH2 and CH3 bonds.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Hugo Tavera
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Frederic Leblond
- Polytechnique Montréal, Montreal, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
- Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
5
|
Gautam M, Gabrani R. Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment. Curr Med Sci 2024; 44:1175-1184. [PMID: 39695017 DOI: 10.1007/s11596-024-2950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/21/2024] [Indexed: 12/20/2024]
Abstract
There are several types of brain tumors but glioblastoma (GBM) is one of the highly malignant tumors. A primary concern with GBM is that the treatment is inadequate. Even after giving many multi-stacked combinations of therapies to patients, inclusive of chemotherapy, radiation, and surgery, the median survival rate remains poor. Due to its heterogeneous nature, the use of selective therapy for specific targeting of tumor cells is of particular importance. Although many treatment alternatives which include surgery with adjuvant chemotherapy and radiotherapy are available, the prognosis of the disease is very poor. Combination therapy is becoming the foundation of modern antitumor therapy and it is continuously evolving and developing innovative drug regimens as evidenced by ongoing preclinical and clinical trials. In this review, we discuss the current treatment options and emerging therapeutic approaches for the treatment of GBM. The prospects for alternative glioblastoma therapy are also discussed.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
6
|
Bastiancich C, Snacel-Fazy E, Fernandez S, Robert S, Stacchini R, Plantureux L, Boissonneau S, Testud B, Guillet B, Debarbieux F, Luche H, Figarella-Branger D, Estève MA, Tabouret E, Tchoghandjian A. Tailoring glioblastoma treatment based on longitudinal analysis of post-surgical tumor microenvironment. J Exp Clin Cancer Res 2024; 43:311. [PMID: 39605004 PMCID: PMC11603899 DOI: 10.1186/s13046-024-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM), an incurable primary brain tumor, typically requires surgical intervention followed by chemoradiation; however, recurrences remain fatal. Our previous work demonstrated that a nanomedicine hydrogel (GemC12-LNC) delays recurrence when administered post-surgery. However, tumor debulking also triggers time-dependent immune reactions that promote recurrence at the resection cavity borders. We hypothesized that combining the hydrogel with an immunomodulatory drug could enhance therapeutic outcomes. A thorough characterization of the post-surgical microenvironment (SMe) is crucial to guide combinatorial approaches.In this study, we performed cellular resolution imaging, flow cytometry and spatial hyperplexed immunofluorescence imaging to characterize the SMe in a syngeneic mouse model of tumor resection. Owing to our dynamic approach, we observed transient opening of the blood-brain barrier (BBB) during the first week after surgery. BBB permeability post-surgery was also confirmed in GBM patients. In our murine model, we also observed changes in immune cell morphology and spatial location post-surgery over time in resected animals as well as the accumulation of reactive microglia and anti-inflammatory macrophages in recurrences compared to unresected tumors since the first steps of recurrence growth. Therefore we investigated whether starting a systemic treatment with the SMAC mimetic small molecule (GDC-0152) directly after surgery would be beneficial for enhancing microglial anti-tumoral activity and decreasing the number of anti-inflammatory macrophages around the GemC12-LNC hydrogel-loaded tumor cavity. The immunomodulatory effects of this drug combination was firstly shown in patient-derived tumoroids. Its efficacy was confirmed in vivo by survival analysis and correlated with reversal of the immune profile as well as delayed tumor recurrence.This comprehensive study identified critical time frames and immune cellular targets within the SMe, aiding in the rational design of combination therapies to delay recurrence onset. Our findings suggest that post-surgical systemic injection of GDC-0152 in combination with GemC12-LNC local treatment is a promising and innovative approach for managing GBM recurrence, with potential for future translation to human patient.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France.
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, Brussels, 1200, Belgium.
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PETRA"TECH", Marseille, 13005, France.
| | - Emmanuel Snacel-Fazy
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | | | | | - Roberta Stacchini
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | - Léa Plantureux
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Sébastien Boissonneau
- Department of Neuro-Surgery, AP-HM, Hôpital Universitaire Timone, Marseille, 13005, France
- Department of Neuro-Surgery, Valenciennes Hospital, Valenciennes, 59300, France
| | - Benoit Testud
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- Aix Marseille Univ, APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, 13005, France
- Department of Neuroradiology, Aix Marseille Univ, APHM, Hôpital Universitaire Timone, Marseille, 13005, France
| | - Benjamin Guillet
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, APHM, Hôpital Timone, Pôle Pharmacie, Radiopharmacie, Marseille, 13005, France
| | - Franck Debarbieux
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Institut Universitaire de France, Paris, 75005, France
| | - Hervé Luche
- Aix-Marseille Univ, CNRS, INSERM, CIPHE, Marseille, 13009, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | - Marie-Anne Estève
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
- Aix Marseille Univ, APHM, Hôpital Timone, Service Pharmacie, Marseille, 13005, France
| | - Emeline Tabouret
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
- AP-HM, CHU Timone, Service de Neurooncologie, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PE"TRANSLA", Marseille, 13005, France
| | - Aurélie Tchoghandjian
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France.
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PETRA"TECH", Marseille, 13005, France.
| |
Collapse
|
7
|
Grigore IA, Rajagopal A, Chow JTS, Stone TJ, Salmena L. Discovery of miRNA-mRNA regulatory networks in glioblastoma reveals novel insights into tumor microenvironment remodeling. Sci Rep 2024; 14:27493. [PMID: 39528571 PMCID: PMC11555236 DOI: 10.1038/s41598-024-78337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Adult glioblastoma (GBM) is a highly aggressive primary brain tumor, accounting for nearly half of all malignant brain tumors, with a median survival rate of only 8 months. Treatment for GBM is largely ineffective due to the highly invasive nature and complex tumor composition of this malignancy. MicroRNAs (miRNA) are short, non-coding RNAs that regulate gene expression by binding to messenger RNAs (mRNA). While specific miRNA have been associated with GBM, their precise roles in tumor development and progression remain unclear. In this study, the analysis of miRNA expression data from 743 adult GBM cases and 59 normal brain samples identified 94 downregulated miRNA and 115 upregulated miRNA. Many of these miRNA were previously linked to GBM pathology, confirming the robustness of our approach, while we also identified novel miRNA that may act as potential regulators in GBM. By integrating miRNA predictions with gene expression data, we were able to associate downregulated miRNA with tumor microenvironment factors, including extracellular matrix remodeling and signaling pathways involved in tumor initiation, while upregulated miRNA were found to be associated with essential neuronal processes. This analysis highlights the significance of miRNA in GBM and serves as a foundation for further investigation.
Collapse
Affiliation(s)
- Iulia A Grigore
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Athulram Rajagopal
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas J Stone
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, University College London, London, UK
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Mischkulnig M, Reichert D, Wightman L, Roth V, Hölz M, Körner LI, Kiesel B, Vejzovic D, Giardina GA, Erkkilae MT, Unterhuber A, Andreana M, Rinner B, Kubin A, Leitgeb R, Widhalm G. Detection of a Water-Soluble Hypericin Formulation in Glioblastoma Tissue with Fluorescence Lifetime and Intensity Using a Dual-Tap CMOS Camera System. Diagnostics (Basel) 2024; 14:2423. [PMID: 39518390 PMCID: PMC11545445 DOI: 10.3390/diagnostics14212423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND High hypericin-loaded polyvinylpyrrolidone (HHL-PVP) constitutes a novel approach to utilize the promising characteristics of hypericin for photodynamic diagnosis (PDD) and therapy (PDT) of brain tumors in an orally bioavailable formulation. The aim of this study was to investigate the ability of a Complementary Metal-Oxide-Semiconductor (CMOS) camera-based fluorescence imaging system to selectively visualize HHL-PVP in glioblastoma tissue even in the presence of 5-Aminolvevulinic acid (5-ALA) induced fluorescence, which is widely utilized in brain tumor surgery. METHODS We applied a previously established system with a non-hypericin specific filter for 5-ALA fluorescence visualization and a newly introduced hypericin-specific filter at 575-615 nm that transmits the spectrum of hypericin, but not 5-ALA fluorescence. Glioblastoma specimens obtained from 12 patients (11 with preoperative 5-ALA intake) were ex vivo incubated with HHL-PVP. Subsequently, fluorescence intensity and lifetime changes using both the non-hypericin specific filter and hypericin-specific filter were measured before and after HHL-PVP incubation and after subsequent rinsing. RESULTS While no significant differences in fluorescence signal were observed using the non-hypericin specific filter, statistically significant increases in fluorescence intensity (p = 0.001) and lifetime (p = 0.028) after HHL-PVP incubation were demonstrated using the hypericin-specific filter. In consequence, specimens treated with HHL-PVP could be identified according to the fluorescence signal with high diagnostic sensitivity (87.5%) and specificity (100%). CONCLUSIONS Our CMOS camera-based system with a hypericin-specific filter is capable of selectively visualizing hypericin fluorescence in glioblastoma tissue after ex vivo HHL-PVP incubation. In the future, this technique could facilitate clinical investigations of HHL-PVP for PDD and PDT while maintaining the current standard of care with 5-ALA guidance.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - David Reichert
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University Vienna, 1090 Vienna, Austria
| | | | - Vanessa Roth
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Marijke Hölz
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa I. Körner
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| | - Djenana Vejzovic
- Division of Biomedical Research, Medical University of Graz, 8010 Graz, Austria
| | - Gabriel A. Giardina
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mikael T. Erkkilae
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Andreana
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | | | - Rainer Leitgeb
- Department of Medical Physics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University Vienna, 1090 Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Donaldson H, Golub D, Placantonakis DG. Staged intervention to enable the resection of a large left temporoinsular cystic glioblastoma with language preservation: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24362. [PMID: 39401457 PMCID: PMC11488367 DOI: 10.3171/case24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/25/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Resection of glioblastoma (GBM) in eloquent regions depends on functional mapping to limit perioperative neurological morbidity. When neurological deficits preclude reliable mapping, neurosurgeons should explore potential mitigation strategies. The authors present the case of a patient with a large left cystic temporoinsular GBM and aphasia, for whom the authors used intraoperative language mapping and a staged approach to enable safe tumor resection. OBSERVATIONS A 49-year-old female presented with progressive mixed aphasia for 1 month and new-onset right facial droop. Magnetic resonance imaging (MRI) revealed a large, heterogeneously enhancing, left temporoinsular tumor with a significant cystic component. Her aphasia was profound, and resection without reliable language mapping was deemed unsafe. An initial stereotactic tumoral cyst aspiration was performed, which reduced local mass effect and improved her language function. Cyst decompression thereby enabled both task-based functional MRI and intraoperative awake speech mapping, resulting in a safe resection of her GBM. LESSONS Safe resection of eloquently localized GBM is compromised when neurological deficits prohibit intraoperative functional mapping. This case demonstrates a mitigation strategy specific to cystic lesions in which an initial-stage stereotactic cyst aspiration is aimed at generating sufficient interval neurological improvement, such that intraoperative functional mapping can be performed during a second-stage resection. https://thejns.org/doi/10.3171/CASE24362.
Collapse
Affiliation(s)
- Hayley Donaldson
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Danielle Golub
- Department of Neurosurgery, Northwell Health, Manhasset, New York
| | | |
Collapse
|
10
|
Patel V, Chavda V. Intraoperative glioblastoma surgery-current challenges and clinical trials: An update. CANCER PATHOGENESIS AND THERAPY 2024; 2:256-267. [PMID: 39371095 PMCID: PMC11447313 DOI: 10.1016/j.cpt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 10/08/2024]
Abstract
Surgical excision is an important part of the multimodal therapy strategy for patients with glioblastoma, a very aggressive and invasive brain tumor. While major advances in surgical methods and technology have been accomplished, numerous hurdles remain in the field of glioblastoma surgery. The purpose of this literature review is to offer a thorough overview of the current challenges in glioblastoma surgery. We reviewed the difficulties associated with tumor identification and visualization, resection extent, neurological function preservation, tumor margin evaluation, and inclusion of sophisticated imaging and navigation technology. Understanding and resolving these challenges is critical in order to improve surgical results and, ultimately, patient survival.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat 388001, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Medicine, Multispecialty, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, Gujarat 382350, India
| |
Collapse
|
11
|
Wanjari M, Mittal G, Prasad R, Choudhary L, Adrien TDE. Neurosurgical management of primary and secondary brain tumors: new horizons and emerging strategies. Neurosurg Rev 2024; 47:625. [PMID: 39285094 DOI: 10.1007/s10143-024-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 02/01/2025]
Affiliation(s)
- Mayur Wanjari
- Department of Research, Datta Meghe Institute of Higher Education & Research (DMIHER), Sawangi, Maharashtra, India.
| | - Gaurav Mittal
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, Maharashtra, India.
| | - Roshan Prasad
- Department of Research, Datta Meghe Institute of Higher Education & Research (DMIHER), Sawangi, Maharashtra, India
| | - Lakshya Choudhary
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, Maharashtra, India
| | - Tangmi Djabo Eric Adrien
- Université Technologique Bel Campus, University in Kinshasa, SKinshasa, Democratic Republic of Congo
| |
Collapse
|
12
|
Xiao Y, Li M, Wang X, Tan J, Qin C, Liu Q. Fluorescein-guided surgery in high-grade gliomas: focusing on the eloquent and deep-seated areas. J Cancer Res Clin Oncol 2024; 150:274. [PMID: 38795238 PMCID: PMC11127876 DOI: 10.1007/s00432-024-05796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
PURPOSE The vital function of eloquent and deep brain areas necessitates precise treatment for tumors located in these regions. Fluorescein-guided surgery (FGS) has been widely used for high-grade gliomas (HGGs) resection. Nevertheless, the safety and efficacy of utilizing this technique for resecting brain tumors located in eloquent and deep-seated areas remain uncertain. This study aims to assess the safety and extent of resection of HGGs in these challenging tumors with fluorescein and explore its impact on patient survival. METHODS A retrospective analysis was conducted on the clinical and radiological data of 67 consecutive patients with eloquent or deep-seated HGGs who underwent surgery between January 2020 and June 2023. Lacroix functional location grade was used to determine the eloquence of the tumors. The comparison between the fluorescence-guided surgery group (FGS, n = 32) and the conventional white-light microscopic surgery group (non-FGS, n = 35) included assessments of extent of resection (EOR), rates of gross total resection (GTR, 100%) and near-total resection (NTR, 99 to 98%), postoperative Neurologic Assessment in Neuro-Oncology (NANO) scores, overall survival (OS), and progression-free survival (PFS), to evaluate the safety and efficacy of fluorescein-guided technology in tumor resection at these specific locations. RESULTS Baseline of demographics, lesion location, and pathology showed no significant difference between the two groups. GTR of the FGS group was higher than the non-FGS group (84.4% vs. 60.0%, OR 3.60, 95% CI 1.18-10.28, p < 0.05). The FGS group also showed higher GTR + NTR (EOR ≥ 98%) than the non-FGS group (93.8% vs. 65.7%, OR 7.83, 95% CI 1.86-36.85, p < 0.01). 87.0% of eloquent tumors (Lacroix grade III) in the FGS group achieved GTR + NTR, compared to 52.2% of control group (OR 6.11, 95% CI 1.50-22.78, p < 0.05). For deep-seated tumors, the rate of GTR + NTR in the two groups were 91.7% and 53.3%, respectively (OR 9.62, 95% CI 1.05-116.50, p < 0.05). No significant difference of the preoperative NANO score of the two groups was found. The postoperative NANO score of the FGS group was significantly lower than the non-FGS group (2.56 ± 1.29 vs. 3.43 ± 1.63, p < 0.05). Median OS of the FGS group was 4.2 months longer than the non-FGS group despite no statistical difference (18.2 months vs. 14.0 months, HR 0.63, 95% CI 0.36-1.11, p = 0.112), while PSF was found significantly longer in FGS patients than those of the non-FGS group (11.2 months vs. 7.7 months, HR 0.59, 95% CI 0.35-0.99, p < 0.05). CONCLUSION Sodium fluorescein-guided surgery for high-grade gliomas in eloquent and deep-seated brain regions enables more extensive resection while preserving neurologic function and improve patient survival.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingrui Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhu E, Wang J, Jing Q, Shi W, Xu Z, Ai P, Chen Z, Dai Z, Shan D, Ai Z. Individualized survival prediction and surgery recommendation for patients with glioblastoma. Front Med (Lausanne) 2024; 11:1330907. [PMID: 38784239 PMCID: PMC11111908 DOI: 10.3389/fmed.2024.1330907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 05/25/2024] Open
Abstract
Background There is a lack of individualized evidence on surgical choices for glioblastoma (GBM) patients. Aim This study aimed to make individualized treatment recommendations for patients with GBM and to determine the importance of demographic and tumor characteristic variables in the selection of extent of resection. Methods We proposed Balanced Decision Ensembles (BDE) to make survival predictions and individualized treatment recommendations. We developed several DL models to counterfactually predict the individual treatment effect (ITE) of patients with GBM. We divided the patients into the recommended (Rec.) and anti-recommended groups based on whether their actual treatment was consistent with the model recommendation. Results The BDE achieved the best recommendation effects (difference in restricted mean survival time (dRMST): 5.90; 95% confidence interval (CI), 4.40-7.39; hazard ratio (HR): 0.71; 95% CI, 0.65-0.77), followed by BITES and DeepSurv. Inverse probability treatment weighting (IPTW)-adjusted HR, IPTW-adjusted OR, natural direct effect, and control direct effect demonstrated better survival outcomes of the Rec. group. Conclusion The ITE calculation method is crucial, as it may result in better or worse recommendations. Furthermore, the significant protective effects of machine recommendations on survival time and mortality indicate the superiority of the model for application in patients with GBM. Overall, the model identifies patients with tumors located in the right and left frontal and middle temporal lobes, as well as those with larger tumor sizes, as optimal candidates for SpTR.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weizhong Shi
- Shanghai Hospital Development Center, Shanghai, China
| | - Ziqin Xu
- Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, United States
| | - Pu Ai
- School of Medicine, Tongji University, Shanghai, China
| | - Zhihao Chen
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Zhihao Dai
- School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Achkasova K, Kukhnina L, Moiseev A, Kiseleva E, Bogomolova A, Loginova M, Gladkova N. Detection of acute and early-delayed radiation-induced changes in the white matter of the rat brain based on numerical processing of optical coherence tomography data. JOURNAL OF BIOPHOTONICS 2024; 17:e202300458. [PMID: 38253332 DOI: 10.1002/jbio.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Detection of radiation-induced changes of the brain white matter is important for brain neoplasms repeated surgery. We investigated the influence of irradiation on the scattering properties of the white matter using optical coherence tomography (OCT). Healthy Wistar rats undergone the irradiation of the brain right hemisphere. At seven time points from the irradiation procedure (2-14 weeks), an ex vivo OCT study was performed with subsequent calculation of attenuation coefficient values in the corpus callosum followed by immunohistochemical analysis. As a result, we discovered acute and early-delayed changes characterized by the edema of different severity, accompanied by a statistically significant decrease in attenuation coefficient values. In particular, these changes were found at 2 weeks after irradiation in the irradiated hemisphere, while at 6- and 12-week time points they affected both irradiated and contralateral hemisphere. Thus, radiation-induced changes occurring in white matter during the first 3 months after irradiation can be detected by OCT.
Collapse
Affiliation(s)
- Ksenia Achkasova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Liudmila Kukhnina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander Moiseev
- Laboratory of Highly Sensitive Optical Measurements, Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria Loginova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Smyth JW, Guo S, O'Rourke L, Deaver S, Dahlka J, Nurmemmedov E, Sheng Z, Gourdie RG, Lamouille S. Increased interaction between connexin43 and microtubules is critical for glioblastoma stem-like cell maintenance and tumorigenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.576347. [PMID: 38328202 PMCID: PMC10849643 DOI: 10.1101/2024.01.26.576347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. One major challenge in GBM treatment is the resistance to chemotherapy and radiotherapy observed in subpopulations of cancer cells, including GBM stem-like cells (GSCs). These cells hold the ability to self-renew or differentiate following treatment, participating in tumor recurrence. The gap junction protein connexin43 (Cx43) has complex roles in oncogenesis and we have previously demonstrated an association between Cx43 and GBM chemotherapy resistance. Here, we report, for the first time, increased direct interaction between non-junctional Cx43 with microtubules in the cytoplasm of GSCs. We hypothesize that non-junctional Cx43/microtubule complexing is critical for GSC maintenance and survival and sought to specifically disrupt this interaction while maintaining other Cx43 functions, such as gap junction formation. Using a Cx43 mimetic peptide of the carboxyl terminal tubulin-binding domain of Cx43 (JM2), we successfully ablated Cx43 interaction with microtubules in GSCs. Importantly, administration of JM2 significantly decreased GSC survival in vitro , and limited GSC-derived tumor growth in vivo . Together, these results identify JM2 as a novel peptide drug to ablate GSCs in GBM treatment.
Collapse
|
16
|
Nabian N, Ghalehtaki R, Zeinalizadeh M, Balaña C, Jablonska PA. State of the neoadjuvant therapy for glioblastoma multiforme-Where do we stand? Neurooncol Adv 2024; 6:vdae028. [PMID: 38560349 PMCID: PMC10981465 DOI: 10.1093/noajnl/vdae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite several investigations in this field, maximal safe resection followed by chemoradiotherapy and adjuvant temozolomide with or without tumor-treating fields remains the standard of care with poor survival outcomes. Many endeavors have failed to make a dramatic change in the outcomes of GBM patients. This study aimed to review the available strategies for newly diagnosed GBM in the neoadjuvant setting, which have been mainly neglected in contrast to other solid tumors.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Carmen Balaña
- B.ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, Badalona, Spain
| | | |
Collapse
|
17
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Scott AJ, Mittal A, Meghdadi B, Palavalasa S, Achreja A, O'Brien A, Kothari AU, Zhou W, Xu J, Lin A, Wilder-Romans K, Edwards DM, Wu Z, Feng J, Andren AC, Zhang L, Tarnal V, Redic KA, Qi N, Fischer J, Yang E, Regan MS, Stopka SA, Baquer G, Lawrence TS, Venneti S, Agar NYR, Lyssiotis CA, Al-Holou WN, Nagrath D, Wahl DR. Rewiring of cortical glucose metabolism fuels human brain cancer growth. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297489. [PMID: 37961582 PMCID: PMC10635194 DOI: 10.1101/2023.10.24.23297489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.
Collapse
|
19
|
Ragnhildstveit A, Li C, Zimmerman MH, Mamalakis M, Curry VN, Holle W, Baig N, Uğuralp AK, Alkhani L, Oğuz-Uğuralp Z, Romero-Garcia R, Suckling J. Intra-operative applications of augmented reality in glioma surgery: a systematic review. Front Surg 2023; 10:1245851. [PMID: 37671031 PMCID: PMC10476869 DOI: 10.3389/fsurg.2023.1245851] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background Augmented reality (AR) is increasingly being explored in neurosurgical practice. By visualizing patient-specific, three-dimensional (3D) models in real time, surgeons can improve their spatial understanding of complex anatomy and pathology, thereby optimizing intra-operative navigation, localization, and resection. Here, we aimed to capture applications of AR in glioma surgery, their current status and future potential. Methods A systematic review of the literature was conducted. This adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, and Scopus electronic databases were queried from inception to October 10, 2022. Leveraging the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) framework, study eligibility was evaluated in the qualitative synthesis. Data regarding AR workflow, surgical application, and associated outcomes were then extracted. The quality of evidence was additionally examined, using hierarchical classes of evidence in neurosurgery. Results The search returned 77 articles. Forty were subject to title and abstract screening, while 25 proceeded to full text screening. Of these, 22 articles met eligibility criteria and were included in the final review. During abstraction, studies were classified as "development" or "intervention" based on primary aims. Overall, AR was qualitatively advantageous, due to enhanced visualization of gliomas and critical structures, frequently aiding in maximal safe resection. Non-rigid applications were also useful in disclosing and compensating for intra-operative brain shift. Irrespective, there was high variance in registration methods and measurements, which considerably impacted projection accuracy. Most studies were of low-level evidence, yielding heterogeneous results. Conclusions AR has increasing potential for glioma surgery, with capacity to positively influence the onco-functional balance. However, technical and design limitations are readily apparent. The field must consider the importance of consistency and replicability, as well as the level of evidence, to effectively converge on standard approaches that maximize patient benefit.
Collapse
Affiliation(s)
- Anya Ragnhildstveit
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Chao Li
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
| | | | - Michail Mamalakis
- Department of Psychiatry, University of Cambridge, Cambridge, England
| | - Victoria N. Curry
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Willis Holle
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Physics and Astronomy, The University of Utah, Salt Lake City, UT, United States
| | - Noor Baig
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | | | - Layth Alkhani
- Integrated Research Literacy Group, Draper, UT, United States
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, England
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, England
| |
Collapse
|
20
|
Mier-García JF, Ospina-Santa S, Orozco-Mera J, Ma R, Plaha P. Supramaximal versus gross total resection in Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4, effect on overall and progression free survival: systematic review and meta-analysis. J Neurooncol 2023; 164:31-41. [PMID: 37561356 DOI: 10.1007/s11060-023-04409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE To synthesize the evidence on the impact on progression-free survival (PFS) and overall survival (OS) of supramaximal resection (SMR) over gross total resection (GTR) in Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4 (Glioblastoma). METHODS The PubMed, Scopus, Web of Science, Ovid and Cochrane databases were systematically searched (up to November 30, 2022). Studies reporting OS and PFS on adult humans with a suspected Glioblastoma, treated either with a SMR or GTR were included. Hazard ratios were estimated for each study and treatment effects were calculated through DerSimonian and Laird random effects models. RESULTS The literature search yielded 14 studies published between 2013 and 2022, enrolling a total of 6779 patients. Analysis of the included studies reveals significantly better clinical outcomes favoring SMR over GTR in terms of PFS (HR 0.67; p = 0.0007), and OS (HR 0.7; p = 0.0001). CONCLUSION Glioblastoma, IDH wild-type and Astrocytoma, IDH-mutant, grade 4, are aggressive tumors with a very short long-term OS. SMR is an effective therapeutic approach contributing to increased PFS and OS in patients with this catastrophic disease.
Collapse
Affiliation(s)
- Juan F Mier-García
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.
- Section of Neurosurgery, School of Medicine, Universidad del Valle, Cali, Valle del Cauca, Colombia.
| | - Stefanía Ospina-Santa
- Department of Neurosurgery, Hospital Universitario del Valle, Cali, Valle del Cauca, Colombia
| | - Javier Orozco-Mera
- Section of Neurosurgery, School of Medicine, Universidad del Valle, Cali, Valle del Cauca, Colombia
- Department of Neurosurgery, Hospital Universitario del Valle, Cali, Valle del Cauca, Colombia
| | - Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
- Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
21
|
Felger L, Rodríguez-Núñez O, Gros R, Maragkou T, McKinley R, Moriconi S, Murek M, Zubak I, Novikova T, Pierangelo A, Schucht P. Robustness of the wide-field imaging Mueller polarimetry for brain tissue differentiation and white matter fiber tract identification in a surgery-like environment: an ex vivo study. BIOMEDICAL OPTICS EXPRESS 2023; 14:2400-2415. [PMID: 37206128 PMCID: PMC10191649 DOI: 10.1364/boe.486438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/21/2023]
Abstract
During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.
Collapse
Affiliation(s)
- Leonard Felger
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Omar Rodríguez-Núñez
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Romain Gros
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Theoni Maragkou
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Richard McKinley
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Stefano Moriconi
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | | | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
22
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|