1
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Krauze AV, Zhao Y, Li MC, Shih J, Jiang W, Tasci E, Cooley Zgela T, Sproull M, Mackey M, Shankavaram U, Tofilon P, Camphausen K. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023; 13:1499. [PMID: 37892181 PMCID: PMC10604983 DOI: 10.3390/biom13101499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Ming-Chung Li
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Joanna Shih
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Philip Tofilon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| |
Collapse
|
3
|
Servidei T, Sgambato A, Lucchetti D, Navarra P, Ruggiero A. Drug Repurposing in Pediatric Brain Tumors: Posterior Fossa Ependymoma and Diffuse Midline Glioma under the Looking Glass. FRONT BIOSCI-LANDMRK 2023; 28:77. [PMID: 37114548 DOI: 10.31083/j.fbl2804077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Tumors of the Central Nervous System (CNS) represent the leading cause of cancer-related deaths in children. Current treatment options are not curative for most malignant histologies, and intense preclinical and clinical research is needed to develop more effective therapeutic interventions against these tumors, most of which meet the FDA definition for orphan diseases. Increased attention is being paid to the repositioning of already-approved drugs for new anticancer indications as a fast-tracking strategy for identifying new and more effective therapies. Two pediatric CNS tumors, posterior fossa ependymoma (EPN-PF) type A and diffuse midline glioma (DMG) H3K27-altered, share loss of H3K27 trimethylation as a common epigenetic hallmark and display early onset and poor prognosis. These features suggest a potentially common druggable vulnerability. Successful treatment of these CNS tumors raises several challenges due to the location of tumors, chemoresistance, drug blood-brain barrier penetration, and the likelihood of adverse side effects. Recently, increasing evidence demonstrates intense interactions between tumor cell subpopulations and supportive tumor microenvironments (TMEs) including nerve, metabolic, and inflammatory TMEs. These findings suggest the use of drugs, and/or multi-drug combinations, that attack both tumor cells and the TME simultaneously. In this work, we present an overview of the existing evidence concerning the most preclinically validated noncancer drugs with antineoplastic activity. These drugs belong to four pharmacotherapeutic classes: antiparasitic, neuroactive, metabolic, and anti-inflammatory. Preclinical evidence and undergoing clinical trials in patients with brain tumors, with special emphasis on pediatric EPN-PF and DMG, are summarized and critically discussed.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore -- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
4
|
Tyagunova EE, Zakharov AS, Glukhov AI, Dobrokhotova VZ, Shlapakov TI, Kozlov VV, Korotkova NV, Tyagunova TE. Features of epileptiform activity in patients with diagnosed glioblastoma: from genetic and biochemical mechanisms to clinical aspects. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-102-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. glioblastomas multiforme (grade Iv gliomas) are common and the most aggressive primary tumors of the brain with very unfavorable prognosis. In all previously published papers on epileptiform activity in glioblastomas, not enough information on encephalogram results is presented.Aim. To study the features of epileptiform activity in patients with glioblastomas and development of a plan for further study of these patients.Materials and methods. An analysis of articles from Elsevier, Embase, Scopus, The Cochrane Library, global Health, Russian Science Citation Index (RSCI) databases, Scholar, google, web of Science, pubmed search engines and scientific electronic library CyberLeninka was performed. materials were selected considering journal indexing system and citations, scientific novelty of the studies, statistical significance of the results. publications repeating data from previous articles or describing animal experiments were excluded from analysis.Results. During the study, data on mechanisms of epileptiform activity pathogenesis, predisposing factors (tumor location in the temporal, frontal or parietal lobes, IDH-1 and / or IDH-2 gene mutations), treatment options in patients with glioblastomas were systemized. Additionally, and original plan of data accumulation for clinical studied taking into account limitations of the previous studies was developed to increase quality of results interpretation.Conclusion. Epileptiform symptoms in glioblastomas negatively affect patients’ quality of life and lifespan. Currently, researchers actively search for an effective method of treatment of epileptic seizures in patients with glioblastomas. The most effective is combination of temozolomide with valproate and levetiracetam due to good control of seizure frequency, low toxicity, and pharmacological synergy between the drugs.
Collapse
Affiliation(s)
- E. E. Tyagunova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - A. S. Zakharov
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | - A. I. Glukhov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| | - V. Z. Dobrokhotova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N. N. Blokhin National Research Institute of Oncology, Ministry of Health of Russia
| | - T. I. Shlapakov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - V. V. Kozlov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - N. V. Korotkova
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | | |
Collapse
|
5
|
Wang Y, Li C, Chi X, Huang X, Gao H, Ji N, Zhang Y. Low MxA Expression Predicts Better Immunotherapeutic Outcomes in Glioblastoma Patients Receiving Heat Shock Protein Peptide Complex 96 Vaccination. Front Oncol 2022; 12:865779. [PMID: 35903678 PMCID: PMC9321638 DOI: 10.3389/fonc.2022.865779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein peptide complex 96 (HSPPC-96) has been proven to be a safe and preliminarily effective therapeutic vaccine in treating newly diagnosed glioblastoma multiforme (GBM) (NCT02122822). However, the clinical outcomes were highly variable, rendering the discovery of outcome-predictive biomarkers essential for this immunotherapy. We utilized multidimensional immunofluorescence staining to detect CD4+ CD8+ and PD-1+ immune cell infiltration levels, MxA and gp96 protein expression in pre-vaccination GBM tissues of 19 patients receiving HSPPC-96 vaccination. We observed low MxA expression was associated with longer OS than high MxA expression (48 months vs. 20 months, p=0.038). Long-term survivors (LTS) exhibited significantly lower MxA expression than short-term survivors (STS) (p= 0.0328), and ROC curve analysis indicated MxA expression as a good indicator in distinguishing LTS and STS (AUC=0.7955, p=0.0318). However, we did not observe any significant impact of immune cell densities or gp96 expression on patient outcomes. Finally, we revealed the association of MxA expression with prognosis linked to a preexisting TCR clone (CDR3-2) but was independent of the peripheral tumor-specific immune response. Taken together, low MxA expression correlated with better survival in GBM patients receiving HSPPC-96 vaccination, indicating MxA as a potential biomarker for early recognition of responsive patients to this immunotherapy.Clinical Trial Registration: ClinicalTrials.gov (NCT02122822) http://www. chictr.org.cn/enindex.aspx (ChiCTR-ONC-13003309).
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Chi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Hua Gao
- Cure & Sure Biotech Co., LTD, Shenzhen, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Yang Zhang, ; Nan Ji,
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yang Zhang, ; Nan Ji,
| |
Collapse
|
6
|
Yamamoto M, Sanomachi T, Suzuki S, Togashi K, Sugai A, Seino S, Sato A, Okada M, Kitanaka C. Gemcitabine radiosensitization primes irradiated malignant meningioma cells for senolytic elimination by navitoclax. Neurooncol Adv 2021; 3:vdab148. [PMID: 34765973 PMCID: PMC8577526 DOI: 10.1093/noajnl/vdab148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Malignant meningioma is an aggressive tumor that requires adjuvant radiotherapy after surgery, yet there has been no standard systemic therapy established so far. We recently reported that malignant meningioma cells are highly sensitive to gemcitabine; however, it remains unknown whether or how gemcitabine interacts with ionizing radiation (IR) in malignant meningioma cells. Methods We examined the radiosensitization effects of gemcitabine using malignant meningioma cell lines and xenografts and explored the underlying mechanisms. Results Gemcitabine sensitized malignant meningioma cells to IR through the induction of senescence both in vitro and in vivo. Gemcitabine augmented the intracellular production of reactive oxygen species (ROS) by IR, which, together with cell growth suppression/senescence induced by this combination, was inhibited by N-acetyl-cysteine, suggesting a pivotal role for ROS in these combinatorial effects. Navitoclax, a senolytic drug that inhibits Bcl-2 proteins, further enhanced the effects of the combination of gemcitabine and IR by strongly inducing apoptotic cell death in senescent cells. Conclusion These results not only indicate the potential of gemcitabine as a candidate radiosensitizer for malignant meningioma, but also reveal a novel role for gemcitabine radiosensitization as a means to create a therapeutic vulnerability of senescent meningioma cells to senolytics.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
- Corresponding Author: Masahiro Yamamoto, MD, PhD, Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, 990-9585, Japan ()
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
- Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
- Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
- Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, Yamagata, Japan
- Corresponding Author: Chifumi Kitanaka, MD, PhD, Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, 990-9585, Japan ()
| |
Collapse
|
7
|
Degorre C, Tofilon P, Camphausen K, Mathen P. Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiat Oncol 2021; 16:191. [PMID: 34583727 PMCID: PMC8480070 DOI: 10.1186/s13014-021-01918-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM. Among those was optimizing radioresponse for GBM in situ. One such strategy to increase radiation efficacy is the addition of a radiosensitizer to improve the therapeutic ratio by enhancing tumor sensitivity while ideally having minimal to no effect on normal tissue. Historically the majority of trials using radiosensitizers have been unsuccessful, but they provide important guidance in what is required to develop agents more efficiently. Improved target selection is essential for a drug to provide maximal benefit, and once that target is identified it must be validated through pre-clinical studies. Careful selection of appropriate in vitro and in vivo models to demonstrate increased radiosensitivity and suitable bioavailability are then necessary to prove that a drug warrants advancement to clinical investigation. Once investigational agents are validated pre-clinically, patient trials require consistency both in terms of planning study design as well as reporting efficacy and toxicity in order to assess the potential benefit of the drug. Through this paper we hope to outline strategies for developing effective radiosensitizers against GBM using as models the examples of XPO1 inhibitors and HDAC inhibitors developed from our own lab.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
9
|
Stritzelberger J, Lainer J, Gollwitzer S, Graf W, Jost T, Lang JD, Mueller TM, Schwab S, Fietkau R, Hamer HM, Distel L. Ex vivo radiosensitivity is increased in non-cancer patients taking valproate. BMC Neurol 2020; 20:390. [PMID: 33099323 PMCID: PMC7585294 DOI: 10.1186/s12883-020-01966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background Valproate (VPA) is a commonly prescribed antiepileptic drug for patients experiencing epileptic seizures due to brain tumors. VPA increases radiation sensitivity in various tumor cells in vitro due to complex mechanisms. This could make tumors more vulnerable to ionizing radiation or overcome radioresistance. Yet, clinical data on possible improvement of tumor control by adding VPA to tumor therapy is controversial. Potentially radiosensitizing effects of VPA on healthy tissue remain unclear. To determine individual radiosensitivity, we analyzed blood samples of individuals taking VPA. Methods Ex vivo irradiated blood samples of 31 adult individuals with epilepsy were studied using 3-color fluorescence in situ hybridization. Aberrations in chromosomes 1, 2 and 4 were analyzed. Radiosensitivity was determined by the mean breaks per metaphase (B/M) and compared to age-matched (2:1) healthy donors. Results The patient cohort (n = 31; female: 38.7%) showed an increase of their average B/M value compared to healthy individuals (n = 61; female: 56.9%; B/M: 0.480 ± 0.09 vs. 0.415 ± 0.07; p = .001). The portion of radiosensitive (B/M > 0.500) and distinctly radiosensitive individuals (B/M > 0.600) was increased in the VPA group (54.9% vs. 11.3 and 9.7% vs. 0.0%; p < .001). In 3/31 patients, radiosensitivity was determined prior to and after VPA treatment and radiosensitivity was increased by VPA-treatment. Conclusions In our study, we confirmed that patients treated with VPA had an increased radiosensitivity compared to the control group. This could be considered in patients taking VPA prior to the beginning of radiotherapy to avoid toxic side effects of VPA-treatment.
Collapse
Affiliation(s)
- Jenny Stritzelberger
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Jennifer Lainer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Stefanie Gollwitzer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Wolfgang Graf
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Johannes D Lang
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tamara M Mueller
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Hajo M Hamer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Zhao Y, Chen S. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-resistance. Curr Drug Targets 2020; 20:891-902. [PMID: 30806313 DOI: 10.2174/1389450120666190222181857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
During the last decade, advances of radiotherapy (RT) have been made in the clinical practice of cancer treatment. RT exerts its anticancer effect mainly via leading to the DNA Double-Strand Break (DSB), which is one of the most toxic DNA damages. Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) are two major DSB repair pathways in human cells. It is known that dysregulations of DSB repair elicit a predisposition to cancer and probably result in resistance to cancer therapies including RT. Therefore, targeting the DSB repair presents an attractive strategy to counteract radio-resistance. In this review, we describe the latest knowledge of the two DSB repair pathways, focusing on several key proteins contributing to the repair, such as DNA-PKcs, RAD51, MRN and PARP1. Most importantly, we discuss the possibility of overcoming radiation resistance by targeting these proteins for therapeutic inhibition. Recent tests of DSB repair inhibitors in the laboratory and their translations into clinical studies are also addressed.
Collapse
Affiliation(s)
- Yucui Zhao
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
11
|
Jovčevska I. Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. Front Oncol 2020; 10:798. [PMID: 32500035 PMCID: PMC7243123 DOI: 10.3389/fonc.2020.00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Even with a rare occurrence of only 1.35% of cancer cases in the United States of America, brain tumors are considered as one of the most lethal malignancies. The most aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal treatment and advances in diagnostic and therapeutic methods, there are no significant changes in patient outcome. Our understanding of glioblastoma was significantly improved with the introduction of next generation sequencing technologies. This led to the identification of different genetic and molecular subtypes, which greatly improve glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and treatment methods are broadly explored. Epigenetic modifications like methylation and changes in histone acetylation are such examples. Recently, in addition to genetic and molecular characteristics, epigenetic profiling of glioblastomas is also used for sample classification. Further advancement of next generation sequencing technologies is expected to identify in detail the epigenetic signature of glioblastoma that can open up new therapeutic opportunities for glioblastoma patients. This should be complemented with the use of computational power i.e., machine and deep learning algorithms for objective diagnostics and design of individualized therapies. Using a combination of phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring us closer to precision medicine where therapies will be tailored to suit the genetic profile and epigenetic signature of the tumor, which will grant longer life expectancy and better quality of life. Still, a number of obstacles including potential bias, availability of data for minorities in heterogeneous populations, data protection, and validation and independent testing of the learning algorithms have to be overcome on the way.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Zhang Y, Mudgal P, Wang L, Wu H, Huang N, Alexander PB, Gao Z, Ji N, Li QJ. T cell receptor repertoire as a prognosis marker for heat shock protein peptide complex-96 vaccine trial against newly diagnosed glioblastoma. Oncoimmunology 2020; 9:1749476. [PMID: 32313731 PMCID: PMC7153824 DOI: 10.1080/2162402x.2020.1749476] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults with a dismal prognosis. We previously reported that vaccination with heat shock protein peptide complex-96 (HSPPC-96) improves survival in patients with newly diagnosed GBM (NCT02122822). Especially for patients with a strong antitumor immune response after vaccination, a durable survival benefit can be achieved. Here, we conducted T cell receptor (TCR) sequencing to retrospectively examine the TCR repertoires of tumor-infiltrating lymphocytes in long-term survivors (LTS) and short-term survivors (STS). We found that LTS exhibit lower TCR repertoire diversity compared with STS, indicating the prevalence of dominant TCR clones in LTS tumors. Accordingly, the LTS group showed increased inter-patient similarity, especially among high-frequency TCR clones, implying some of these dominant clones are shared among LTS. Indeed, we discovered four TCR clones significantly enriched in the LTS group: the presence of these clones has predictive value for stratifying patients prior to vaccination. Together, these findings uncover a group of preexisting TCR clones shared in LTS that can be utilized as candidate biomarkers to select GBM patients most likely to durably respond to HSPPC-96 treatment.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | - Na Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Zhixian Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers (Basel) 2020; 12:cancers12040937. [PMID: 32290213 PMCID: PMC7226351 DOI: 10.3390/cancers12040937] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is one of the most common and detrimental forms of solid brain tumor, with over 10,000 new cases reported every year in the United States. Despite aggressive multimodal treatment approaches, the overall survival period is reported to be less than 15 months after diagnosis. A widely used approach for the treatment of glioblastoma is surgical removal of the tumor, followed by radiotherapy and chemotherapy. While there are several drugs available that are approved by the Food and Drug Administration (FDA), significant efforts have been made in recent years to develop new chemotherapeutic agents for the treatment of glioblastoma. This review describes the molecular targets and pathogenesis as well as the current progress in chemotherapeutic development and other novel therapies in the clinical setting for the treatment of glioblastoma.
Collapse
|
14
|
Mathen P, Rowe L, Mackey M, Smart D, Tofilon P, Camphausen K. Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract 2019; 7:268-276. [PMID: 32537176 DOI: 10.1093/nop/npz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes. Radiosensitizers are an established method of enhancing RT cell killing through the addition of a pharmaceutical agent. Though the majority of trials using radiosensitizers have historically been unsuccessful, there continues to be interest with a variety of approaches having been employed. Epidermal growth factor receptor inhibitors, histone deacetylase inhibitors, antiangiogenic agents, and a number of other molecularly targeted agents have all been investigated as potential methods of radiosensitization in the temozolomide era. Outcomes have varied both in terms of toxicity and survival, but some agents such as valproic acid and bortezomib have demonstrated promising results. However, reporting of results in phase 2 trials in newly diagnosed GBM have been inconsistent, with no standard in reporting progression-free survival and toxicity. There is a pressing need for investigation of new agents; however, nearly all phase 3 trials of GBM patients of the past 25 years have demonstrated no improvement in outcomes. One proposed explanation for this is the selection of agents lacking sufficient preclinical data and/or based on poorly designed phase 2 trials. Radiosensitization may represent a viable strategy for improving GBM outcomes in newly diagnosed patients, and further investigation using agents with promising phase 2 data is warranted.
Collapse
Affiliation(s)
- Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lindsay Rowe
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - DeeDee Smart
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|