1
|
Zhang Y, Shi L, Chan CT, Fung KH, Chang K. Geometrical Theory of Electromagnetic Nonreciprocity. PHYSICAL REVIEW LETTERS 2023; 130:203801. [PMID: 37267537 DOI: 10.1103/physrevlett.130.203801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/20/2023] [Indexed: 06/04/2023]
Abstract
Recent advances in electromagnetic nonreciprocity raise the question of how to engineer the nonreciprocal electromagnetic response with geometrical approaches. In this Letter, we examine this problem by introducing generalized electromagnetic continua consisting structured points, which carry extra degrees of freedom over coordinate transformation. We show that general nonreciprocal media have a unique time-varying Riemannian metric structure with local spinning components. It is demonstrated that the nonreciprocity can be alternatively identified as the torsion tensor of a Riemann-Cartan space, which could provide analytic expressions for the magneto-optical effect and the axionic magnetoelectric coupling. Our theory not only gives a deeper insight into the fundamental understanding of electromagnetic nonreciprocity but also provides a practical principle to geometrically design nonreciprocal devices through frame transformation.
Collapse
Affiliation(s)
- Yongliang Zhang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
| | - Lina Shi
- State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kin Hung Fung
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kai Chang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Xu L, Liu J, Jin P, Xu G, Li J, Ouyang X, Li Y, Qiu CW, Huang J. Black-hole-inspired thermal trapping with graded heat-conduction metadevices. Natl Sci Rev 2023; 10:nwac159. [PMID: 36935932 PMCID: PMC10016200 DOI: 10.1093/nsr/nwac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
The curved space-time produced by black holes leads to the intriguing trapping effect. So far, metadevices have enabled analogous black holes to trap light or sound in laboratory spacetime. However, trapping heat in a conductive environment is still challenging because diffusive behaviors are directionless. Inspired by black holes, we construct graded heat-conduction metadevices to achieve thermal trapping, resorting to the imitated advection produced by graded thermal conductivities rather than the trivial solution of using insulation materials to confine thermal diffusion. We experimentally demonstrate thermal trapping for guiding hot spots to diffuse towards the center. Graded heat-conduction metadevices have advantages in energy-efficient thermal regulation because the imitated advection has a similar temperature field effect to the realistic advection that is usually driven by external energy sources. These results also provide an insight into correlating transformation thermotics with other disciplines, such as cosmology, for emerging heat control schemes.
Collapse
Affiliation(s)
| | | | - Peng Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining 314400, China
| | | | | |
Collapse
|
3
|
Wu S, Song W, Lin Z, Chen C, Zhu S, Li T. Anomalous π modes by Floquet engineering in optical lattices with long-range coupling. OPTICS EXPRESS 2022; 30:44983-44991. [PMID: 36522910 DOI: 10.1364/oe.476899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Photonic Floquet topological insulators provide a powerful tool to manipulate the optical fields, which have been extensively studied with only nearest-neighbor coupling. Here, we demonstrate that nontrivial Floquet topological phase and photonic π modes are brought from long-range coupling in a one-dimensional periodically driven optical lattice. Interestingly, the long-range coupling is found to give rise to new Floquet π modes that do not exist in the traditional Floquet lattices. We interpret the underlying physics by analyzing the replica bands, which shows quasienergies band crossing and reopening of new nontrivial π gaps due to the long-range coupling. Our results provide a new route in manipulating optical topological modes by Floquet engineering with long-range coupling.
Collapse
|
4
|
Sheng C, Wang Y, Chang Y, Wang H, Lu Y, Yang Y, Zhu S, Jin X, Liu H. Bound vortex light in an emulated topological defect in photonic lattices. LIGHT, SCIENCE & APPLICATIONS 2022; 11:243. [PMID: 35915073 PMCID: PMC9343378 DOI: 10.1038/s41377-022-00931-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Topology have prevailed in a variety of branches of physics. And topological defects in cosmology are speculated akin to dislocation or disclination in solids or liquid crystals. With the development of classical and quantum simulation, such speculative topological defects are well-emulated in a variety of condensed matter systems. Especially, the underlying theoretical foundations can be extensively applied to realize novel optical applications. Here, with the aid of transformation optics, we experimentally demonstrated bound vortex light on optical chips by simulating gauge fields of topological linear defects in cosmology through position-dependent coupling coefficients in a deformed photonic graphene. Furthermore, these types of photonic lattices inspired by topological linear defects can simultaneously generate and transport optical vortices, and even can control the orbital angular momentum of photons on integrated optical chips.
Collapse
Affiliation(s)
- Chong Sheng
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yao Wang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijun Chang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiming Wang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongheng Lu
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingyue Yang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xianmin Jin
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China.
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Hui Liu
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
5
|
Xu L, Chen H. Transformation Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005489. [PMID: 34622508 DOI: 10.1002/adma.202005489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/01/2021] [Indexed: 06/13/2023]
Abstract
Based on the form-invariance of Maxwell's equations under coordinate transformations, mathematically smooth deformation of space can be physically equivalent to inhomogeneous and anisotropic electromagnetic (EM) medium (called a transformation medium). It provides a geometric recipe to control EM waves at will. A series of examples of achieving transformation media by artificially structured units from conventional materials is summarized here. Such concepts are firstly implemented for EM waves, and then extended to other wave dynamics, such as elastic waves, acoustic waves, surface water waves, and even stationary fields. These shall be cataloged as transformation metamaterials. In addition, it might be conceptually attractive and practically useful to control diverse waves for multi-physics designs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Physics and Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Huanyang Chen
- Department of Physics and Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| |
Collapse
|