Zhang J. Patterns and evolutionary consequences of pleiotropy.
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2023;
54:1-19. [PMID:
39473988 PMCID:
PMC11521367 DOI:
10.1146/annurev-ecolsys-022323-083451]
[Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected) with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. The rest of the review discusses evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory vs. coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.
Collapse