1
|
Crane AH, Baldry CJ, Rankin KE, Clarkin CE, Williams KA, Gostling NJ. The three-dimensional structure of medullary bone: Novel criteria for the identification of avian sex-specific bone tissue. Dev Biol 2025; 521:108-121. [PMID: 39938771 DOI: 10.1016/j.ydbio.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/09/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Medullary bone is a fast-growing, ephemeral bone tissue found inside the bone cavities of female birds. Identifying this tissue in the bones of fossil avian and non-avian dinosaurs has the potential to determine which specimens represent reproductively mature females. However, difficulties in distinguishing medullary bone from superficially similar bone pathologies has led to uncertainty as to whether some specimens previously thought to contain medullary bone instead represent sick or injured individuals. The most frequently mentioned of these pathologies is avian osteopetrosis, a virally-induced condition in birds causing bony lesions which can resemble medullary bone. Lists of criteria, primarily using two-dimensional osteohistology, have yet to form a comprehensive framework through which all medullary bone can be positively identified, and all pathology excluded. Here, we use high-resolution computed tomography (μCT) to characterise the three-dimensional structure of medullary bone in modern birds for the first time and make comparisons to the endosteal lesions of avian osteopetrosis. We identify both qualitative and quantitative features which we suggest to be characteristic of medullary bone, including connectivity density and osteocyte lacunar orientation, and highlight conspicuously variable features which require further investigation. We find several three-dimensional which can be used to differentiate between medullary bone and avian osteopetrosis, including structural anisotropy and trabecular thickness. These three-dimensional characters can be added to the growing framework of criteria to identify medullary bone in the fossil record and thus help determine the sex of dinosaurs.
Collapse
Affiliation(s)
- Abi H Crane
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK; School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Claudia J Baldry
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Kathryn E Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Katherine A Williams
- School of the Environment and Life Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.
| | - Neil J Gostling
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
2
|
Wang S, Li L, Zhao C, Rummy P, Wang R, Hu D. Redescription and phylogenetic affinities of the Early Cretaceous enantiornithine Dapingfangornis sentisorhinus. Anat Rec (Hoboken) 2023. [PMID: 37905495 DOI: 10.1002/ar.25341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Dapingfangornis sentisorhinus, a small to medium-sized enantiornithine from the Lower Cretaceous Jiufotang Formation in Western Liaoning, China, stands as one of the earliest known enantiornithines with well-preserved ornamental tail feathers. However, the original holotype description was limited due to damage and matrix interference, which obscured crucial osteological details. Therefore, we provide an updated description of the holotype specimen of D. sentisorhinus with the aid of CT scanning to reveal new and revised osteological information. Furthermore, a phylogenetic analysis of newly acquired data situates Dapingfangornis within the Enantiornithes, closely aligned with Pterygornis and a few other taxa, which may represent a previously unrecognized clade of Early Cretaceous enantiornithines.
Collapse
Affiliation(s)
- Shiying Wang
- College of Paleontology, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life and Change of Environment, Shenyang Normal University, Shenyang, People's Republic of China
| | - Li Li
- College of Paleontology, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life and Change of Environment, Shenyang Normal University, Shenyang, People's Republic of China
| | - Cuilin Zhao
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Paul Rummy
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Renfei Wang
- Graduate School, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Dongyu Hu
- College of Paleontology, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life and Change of Environment, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
3
|
Abstract
Palaeoecological deductions are vital for understanding the evolution and diversification of species within prehistoric environments. This review highlights the multitude of ways in which the microanatomy and microscopic structure of bones enables palaeoecological deductions. The occurrence of growth marks in bones is discussed, and their usefulness in deducing the ontogenetic status and age of individuals is considered, as well as how such marks in bones permit the assessment of the growth dynamics of individuals and species. Here osteohistology is shown to provide insight into the structure of past populations, as well as ecological relationships between individuals. In addition, the response of bones to trauma, disease and moulting is considered. Finally, I explore how osteohistology can give insight into ecomorphological adaptations, such as filter feeding, probe feeding and saltatorial locomotion. Methodological advances in three-dimensional microtomography and synchrotron scanning bodes well for future studies in osteohistology and despite some compromises in terms of tissue identity, circumvents the crucial issue of destructive analyses.
Collapse
Affiliation(s)
- Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, John Day Building, University Avenue, Rondebosch 7700, South Africa
| |
Collapse
|
4
|
Yan J, Wang J, Chen J, Shi H, Liao X, Pan C, Liu Y, Yang X, Ren Z, Yang X. Adjusting phosphate feeding regimen according to daily rhythm increases eggshell quality via enhancing medullary bone remodeling in laying hens. J Anim Sci Biotechnol 2023; 14:17. [PMID: 36894995 PMCID: PMC9999492 DOI: 10.1186/s40104-023-00829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Body phosphorus metabolism exhibits a circadian rhythm over the 24-h daily cycle. The egg laying behavior makes laying hens a very special model for investigating phosphorus circadian rhythms. There is lack of information about the impact of adjusting phosphate feeding regimen according to daily rhythm on the phosphorus homeostasis and bone remodeling of laying hens. METHODS AND RESULTS Two experiments were conducted. In Exp. 1, Hy-Line Brown laying hens (n = 45) were sampled according the oviposition cycle (at 0, 6, 12, and 18 h post-oviposition, and at the next oviposition, respectively; n = 9 at each time point). Diurnal rhythms of body calcium/phosphorus ingestions and excretions, serum calcium/phosphorus levels, oviduct uterus calcium transporter expressions, and medullary bone (MB) remodeling were illustrated. In Exp. 2, two diets with different phosphorus levels (0.32% and 0.14% non-phytate phosphorus (NPP), respectively) were alternately presented to the laying hens. Briefly, four phosphorus feeding regimens in total (each included 6 replicates of 5 hens): (1) fed 0.32% NPP at both 09:00 and 17:00; (2) fed 0.32% NPP at 09:00 and 0.14% NPP at 17:00; (3) fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00; (4) fed 0.14% NPP at both 09:00 and 17:00. As a result, the regimen fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00, which was designed to strengthen intrinsic phosphate circadian rhythms according to the findings in Exp. 1, enhanced (P < 0.05) MB remodeling (indicated by histological images, serum markers and bone mineralization gene expressions), elevated (P < 0.05) oviduct uterus calcium transportation (indicated by transient receptor potential vanilloid 6 protein expression), and subsequently increased (P < 0.05) eggshell thickness, eggshell strength, egg specific gravity and eggshell index in laying hens. CONCLUSIONS These results underscore the importance of manipulating the sequence of daily phosphorus ingestion, instead of simply controlling dietary phosphate concentrations, in modifying the bone remodeling process. Body phosphorus rhythms will need to be maintained during the daily eggshell calcification cycle.
Collapse
Affiliation(s)
- Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiajie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chong Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Akeda T, Fujiwara SI. Coracoid strength as an indicator of wing-beat propulsion in birds. J Anat 2023; 242:436-446. [PMID: 36380603 PMCID: PMC9919476 DOI: 10.1111/joa.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Birds generate a propulsive force by flapping their wings. They use this propulsive force for various locomotion styles, such as aerodynamic flight, wing-paddle swimming and wing-assisted incline running. It is therefore important to reveal the origin of flapping ability in the evolution from theropod dinosaurs to birds. However, there are no quantitative indices to reconstruct the flapping abilities of extinct forms based on their skeletal morphology. This study compares the section modulus of the coracoid relative to body mass among various extant birds to test whether the index is correlated with flapping ability. According to a survey of 220 historical bird specimens representing 209 species, 180 genera, 83 families and 30 orders, the section modulus of the coracoid relative to body mass in non-flapping birds was significantly smaller than that of flapping birds. This indicates that coracoid strength in non-flapping birds is deemphasised, whereas in flapping birds the strength is emphasised to withstand the contractile force produced by powerful flapping muscles, such as the m. pectoralis and m. supracoracoideus. Therefore, the section modulus of the coracoid is expected to be a powerful tool to reveal the origin of powered flight in birds.
Collapse
Affiliation(s)
- Takumi Akeda
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
6
|
O’Connor J. Enantiornithes. Curr Biol 2022; 32:R1166-R1172. [DOI: 10.1016/j.cub.2022.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Chinsamy A, Handley WD, Worthy TH. Osteohistology of
Dromornis stirtoni
(Aves: Dromornithidae) and the biological implications of the bone histology of the Australian mihirung birds. Anat Rec (Hoboken) 2022. [DOI: 10.1002/ar.25047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anusuya Chinsamy
- Department of Biological Sciences University of Cape Town Rondebosch South Africa
| | - Warren D. Handley
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| | - Trevor H. Worthy
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| |
Collapse
|
8
|
Yan J, Pan C, Liu Y, Liao X, Chen J, Zhu Y, Huang X, Yang X, Ren Z. Dietary vitamin D3 deprivation suppresses fibroblast growth factor 23 signals by reducing serum phosphorus levels in laying hens. ANIMAL NUTRITION 2022; 9:23-30. [PMID: 35949979 PMCID: PMC9344313 DOI: 10.1016/j.aninu.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 on fibroblast growth factor 23 (FGF23) signals as well as phosphorus homeostasis and metabolism in laying hens. Fourteen 40-week-old Hy-Line Brown layers were randomly assigned into 2 treatments: 1) vitamin D3 restriction group (n = 7) fed 0 IU/kg vitamin D3 diet, and 2) regular vitamin D3 group (n = 7) fed 1,600 IU/kg vitamin D3 diet. The study lasted for 21 d. Serum parameters, phosphorus and calcium excretion status, and tissue expressions of type II sodium-phosphate co-transporters (NPt2), FGF23 signals and vitamin D3 metabolic regulators were determined. Hens fed the vitamin D3 restricted diet had decreased serum phosphorus levels (by 31.3%, P = 0.028) when compared to those fed regular vitamin D3 diet. In response to the decreased serum phosphorus, the vitamin D3 restricted laying hens exhibited: 1) suppressed kidney expressions of 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1, by 52.8%, P = 0.036) and 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1, by 99.4%, P = 0.032); 2) suppressed serum levels of FGF23 (by 14.6%, P = 0.048) and increased serum alkaline phosphatase level (by 414.1%, P = 0.012); 3) decreased calvaria mRNA expressions of fibroblast growth factor receptors (FGFR1, by 85.2%, P = 0.003, FGFR2, by 89.4%, P = 0.014, FGFR3, by 88.8%, P = 0.017, FGFR4, by 89.6%, P = 0.030); 4) decreased kidney mRNA expressions of FGFR1 (by 65.5%, P = 0.021), FGFR4 (by 66.0%, P = 0.050) and KLOTHO (by 68.8%, P = 0.038); 5) decreased kidney protein expression of type 2a sodium-phosphorus co-transporters (by 54.3%, P = 0.039); and 6) increased percent excreta calcium (by 26.9%, P = 0.002). In conclusion, the deprivation of dietary vitamin D3 decreased FGF23 signals in laying hens by reducing serum FGF23 level and suppressing calvaria and kidney mRNA expressions of FGF23 receptors.
Collapse
|
9
|
Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X. Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution. eLife 2022; 11:76086. [PMID: 35356889 PMCID: PMC9023055 DOI: 10.7554/elife.76086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The morphology of the pectoral girdle, the skeletal structure connecting the wing to the body, is a key determinant of flight capability, but in some respects is poorly known among stem birds. Here, the pectoral girdles of the Early Cretaceous birds Sapeornis and Piscivorenantiornis are reconstructed for the first time based on computed tomography and three-dimensional visualization, revealing key morphological details that are important for our understanding of early-flight evolution. Sapeornis exhibits a double articulation system (widely present in non-enantiornithine pennaraptoran theropods including crown birds), which involves, alongside the main scapula-coracoid joint, a small subsidiary joint, though variation exists with respect to the shape and size of the main and subsidiary articular contacts in non-enantiornithine pennaraptorans. This double articulation system contrasts with Piscivorenantiornis in which a spatially restricted scapula-coracoid joint is formed by a single set of opposing articular surfaces, a feature also present in other members of Enantiornithines, a major clade of stem birds known only from the Cretaceous. The unique single articulation system may reflect correspondingly unique flight behavior in enantiornithine birds, but this hypothesis requires further investigation from a functional perspective. Our renderings indicate that both Sapeornis and Piscivorenantiornis had a partially closed triosseal canal (a passage for muscle tendon that plays a key role in raising the wing), and our study suggests that this type of triosseal canal occurred in all known non-euornithine birds except Archaeopteryx, representing a transitional stage in flight apparatus evolution before the appearance of a fully closed bony triosseal canal as in modern birds. Our study reveals additional lineage-specific variations in pectoral girdle anatomy, as well as significant modification of the pectoral girdle along the line to crown birds. These modifications produced diverse pectoral girdle morphologies among Mesozoic birds, which allowed a commensurate range of capability levels and styles to emerge during the early evolution of flight.
Collapse
Affiliation(s)
- Shiying Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yubo Ma
- University of Alberta, Edmonton, Canada
| | - Qian Wu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Hu
- Paleontological Museum of Liaoning, Shenyang Normal University, Shenyang, China
| | | | - Xing Xu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Atterholt J, Woodward HN. A histological survey of avian post-natal skeletal ontogeny. PeerJ 2021; 9:e12160. [PMID: 34703663 PMCID: PMC8489414 DOI: 10.7717/peerj.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Bone histology of crown-group birds is a research topic of great interest, permitting insight into the evolution of remarkably high growth rates in this clade and variation across the altricial-precocial spectrum. In this study, we describe microanatomical characteristics of the humerus and femur in partial growth series from 14 crown group birds representing ten major clades (Struthioniformes, Galliformes, Apodiformes, Columbiformes, Charadriiformes, Accipitriformes, Strigiformes, Psittaciformes, Falconiformes, and Passeriformes). Our goals were to: (1) describe the microanatomy of each individual; (2) make inter-and intra-taxonomic comparisons; (3) assess patterns that correspond with developmental mode; and (4) to further parse out phylogenetic, developmental, and functional constraints on avian osteological development. Across taxa, the femoral and humeral tissue of neonates can be broadly characterized as highly-vascularized, disorganized woven bone with great variation in cortical thickness (inter-and intrataxonomically, within an individual specimen, and within a single section). The tissue of precocial chicks is relatively more mature at hatching than in altricial, but other categories along the developmental spectrum were less easy to distinguish, thus we were unable to identify a definitive histological proxy for developmental mode. We did not find evidence to support hypotheses that precocial chicks exclusively have thicker cortices and more mature bone in the femur than the humerus at time of hatching; instead, this is a characteristic of nearly all taxa (regardless of developmental mode), suggesting deep evolutionary origins and the effects of developmental channeling. Bone tissue in adults exhibited unexpected variation, corresponding to differences in body size. Large-bodied birds have cortices of fibrolamellar bone, but organization of tissue increases and vascularity decreases with diminishing body size. The outer circumferential layer (OCL) also appears at earlier growth stages in small-bodied taxa. Thus, while the OCL is indicative of a cessation of appositional growth it is not always indicative of cortical maturity (that is, maximum organization of bony tissue for a given taxon). Small size is achieved by truncating the period of fast growth; manipulation of the timing of offset of bone growth is therefore an important factor in changing growth trajectories to alter adult body size.
Collapse
Affiliation(s)
- Jessie Atterholt
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States
- Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Holly N. Woodward
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States
| |
Collapse
|
11
|
Monfroy QT, Kundrát M, O’Connor JK, Hai‐Lu Y, Marone F, Stampanoni M, Šmajda B. Synchrotron microtomography‐based osteohistology of
Gansus yumenensis
: new data on the evolution of uninterrupted bone deposition in basal birds. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quentin T. Monfroy
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | | | - You Hai‐Lu
- Key Laboratory of Vertebrate Evolution and Human Origins Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Life and Paleoenvironment Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Federica Marone
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
| | - Marco Stampanoni
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
- Institute for Biomedical Engineering ETH Zürich Zurich Switzerland
| | - Beňadik Šmajda
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
| |
Collapse
|
12
|
Monfroy QT, Kundrát M. The osteohistological variability in the evolution of basal avialans. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Quentin T. Monfroy
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University Šrobárova 2Košice Slovakia
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Center for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University Jesenná 5Košice Slovakia
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Center for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University Jesenná 5Košice Slovakia
| |
Collapse
|