1
|
Bokemeyer F, Kiefer P, Schmidt L, Gali K. Facilitators and barriers to smoking cessation: a qualitative study among health professionals in Germany. BMC Health Serv Res 2025; 25:483. [PMID: 40170163 PMCID: PMC11959832 DOI: 10.1186/s12913-025-12646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Tobacco consumption remains a leading cause of global morbidity and mortality and is a significant preventable health concern. Despite the known benefits of smoking cessation, many smokers face difficulties in maintaining abstinence and preventing relapse. In Germany, approximately 30% of individuals aged 14 and older are smokers, which reflects low smoking cessation rates and limited use of evidence-based smoking cessation interventions. PURPOSE This qualitative study aimed to explore experts' views on smoking cessation through interviews with health practitioners. METHODS Fifteen semi-structured in-depth interviews were conducted with professionals from diverse fields, including medical doctors, psychologists, and addiction therapists, from July to November 2022. The data were analyzed using qualitative content analysis. A deductively developed categorization system was applied to identify sub-themes within categories and to systematically code the data. All data were thencategorized under two main categories: facilitators and barriers to smoking cessation. RESULTS Key facilitators included the self-motivation of participants, the communication skills of the intervention leader, and the provision of knowledge about addiction mechanisms. Important barriers were smokers' fears of quitting, external environmental pressures, and inadequate counseling structures. CONCLUSION The findings suggest that improving smoking cessation interventions in Germany require comprehensive strategies involving both structural adjustments in health care settings and enhanced training for tobacco treatment specialists.
Collapse
Affiliation(s)
- Frederike Bokemeyer
- Department of Medical Psychology, University Medical Center Hamburg, Hamburg, Germany
- Center for Oncology, II. Medical Clinic and Polyclinic, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Paulina Kiefer
- Department of Medical Psychology, University Medical Center Hamburg, Hamburg, Germany
- Cancer Epidemiology and Prevention Group, University Cancer Center Hamburg (UCC Hamburg), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lea Schmidt
- Department of Medical Psychology, University Medical Center Hamburg, Hamburg, Germany
| | - Kathleen Gali
- Cancer Epidemiology and Prevention Group, University Cancer Center Hamburg (UCC Hamburg), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hamburg Center for Health Economics (HCHE), University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Pearson J, Nides MA, Cataldo A, Martinez M, Morales J, Seltzer R, Kurka J, Broussard M, Leischow SJ. Varenicline Over-The-Counter Trial on Efficacy and Safety. Nicotine Tob Res 2024; 27:97-105. [PMID: 39012011 DOI: 10.1093/ntr/ntae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Varenicline helps people who smoke quit at rates 2-3 times greater than placebo. Currently, in the United States, varenicline is not available over the counter (OTC). AIMS AND METHODS In this study, we assessed the safety and efficacy of 1 mg and 0.5 mg varenicline as an OTC medication for smoking cessation in comparison to placebo. This randomized, double-blind, placebo-controlled study was performed at two clinical sites in the United States of n = 313 people. The treatment period was 12 weeks. During the COVID pandemic, the protocol was modified to allow remote participation; verification of smoking status was via breath carbon monoxide levels for in-person visits and mailed urine cotinine kits for the remote participants. RESULTS There was no difference in biologically confirmed continuous abstinence by condition between weeks 8 and 12; however, the odds of biologically confirmed point prevalence abstinence were higher for those in the 1 mg b.i.d. condition than for those in the placebo condition at week 12 (OR 3.39; 95% CI 1.49, 7.71), and were higher for those assigned to the 1.0 mg b.i.d. condition than the 0.5 mg b.i.d. condition at week 12 (OR 2.37; 95% CI 1.11, 5.05). Adverse events were modest, and as expected (vivid dreams and nausea in the medication conditions). CONCLUSIONS The results are suggestive that varenicline is safe and effective as an OTC medication.
Collapse
Affiliation(s)
- Jennifer Pearson
- Department of Health Behavior, Policy, and Administration Sciences, University of Nevada-Reno, Reno, Nevada, USA
| | | | - Alana Cataldo
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | | | | | - Ryan Seltzer
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Jonathan Kurka
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Matthew Broussard
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Scott J Leischow
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Carlson DM, Yarns BC. Managing medical and psychiatric multimorbidity in older patients. Ther Adv Psychopharmacol 2023; 13:20451253231195274. [PMID: 37663084 PMCID: PMC10469275 DOI: 10.1177/20451253231195274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Aging increases susceptibility both to psychiatric and medical disorders through a variety of processes ranging from biochemical to pharmacologic to societal. Interactions between aging-related brain changes, emotional and psychological symptoms, and social factors contribute to multimorbidity - the presence of two or more chronic conditions in an individual - which requires a more patient-centered, holistic approach than used in traditional single-disease treatment guidelines. Optimal treatment of older adults with psychiatric and medical multimorbidity necessitates an appreciation and understanding of the links between biological, psychological, and social factors - including trauma and racism - that underlie physical and psychiatric multimorbidity in older adults, all of which are the topic of this review.
Collapse
Affiliation(s)
- David M. Carlson
- Department of Psychiatry/Mental Health, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Brandon C. Yarns
- Department of Psychiatry/Mental Health, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg. 401, Rm. A236, Mail Code 116AE, Los Angeles, CA 90073, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
4
|
Castaldelli-Maia JM, Camargos de Oliveira V, Irber FM, Blaas IK, Angerville B, Sousa Martins-da-Silva A, Koch Gimenes G, Waisman Campos M, Torales J, Ventriglio A, Guillois C, El Ouazzani H, Gazaix L, Favré P, Dervaux A, Apter G. Psychopharmacology of smoking cessation medications: focus on patients with mental health disorders. Int Rev Psychiatry 2023; 35:397-417. [PMID: 38299651 DOI: 10.1080/09540261.2023.2249084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 02/02/2024]
Abstract
The adverse effects of smoking cessation in individuals with mental health disorders have been a point of concern, and progress in the development of treatment has been slow. The primary first-line treatments for smoking cessation are Nicotine Replacement Therapy, Bupropion, Varenicline, and behavioural support. Nortriptyline and Clonidine are second-line treatments used when the first-line treatments are not effective or are contraindicated. Smoking cessation medications have been shown to be effective in reducing nicotine cravings and withdrawal symptoms and promoting smoking cessation among patients living with mental disorders. However, these medications may have implications for patients' mental health and need to be monitored closely. The efficacy and side effects of these medications may vary depending on the patient's psychiatric condition, medication regimen, substance use, or medical comorbidities. The purpose of this review is to synthesise the pharmacokinetics, pharmacodynamics, therapeutic effects, adverse effects, and pharmacological interactions of first- and second-line smoking cessation drugs, with an emphasis on patients suffering from mental illnesses. Careful consideration of the risks and benefits of using smoking cessation medications is necessary, and treatment plans must be tailored to individual patients' needs. Monitoring symptoms and medication regimens is essential to ensure optimal treatment outcomes.
Collapse
Affiliation(s)
- João Mauricio Castaldelli-Maia
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Israel K Blaas
- Perdizes Institute (IPer), Clinics Hospital (HCFMUSP), Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Gislaine Koch Gimenes
- Perdizes Institute (IPer), Clinics Hospital (HCFMUSP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcela Waisman Campos
- Department of Cognitive Neurology, Neuropsychiatry, and Neuropsychology, FLENI, Buenos Aires, Argentina
| | - Julio Torales
- Department of Psychiatry, National University of Asuncion, San Lorenzo, Paraguay
- Regional Institute of Health Research, Universidad Nacional de Caaguazú, Coronel Oviedo, Paraguay
- School of Health Sciences, Universidad Sudamericana, Pedro Juan Caballero, Paraguay
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carine Guillois
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Houria El Ouazzani
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Léna Gazaix
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
| | - Pascal Favré
- Établissement Public de Santé Mentale, Neuilly sur Marne, France
| | - Alain Dervaux
- Établissement Public de Santé Barthélémy Durand, Étampes, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Gisèle Apter
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Établissement Public de Santé Mentale, Neuilly sur Marne, France
- Societé de l'Information Psychiatrique, Bron, France
- University of Rouen Normandy, Rouen, France
| |
Collapse
|
5
|
Schnoll R, Barrila GM, Dalsimer S, Hosie Quinn M, Bauer AM, Fox E, Olonoff M, Jao NC, Leone F, Huffman MD, Khan SS, Gollan JK, Papandonatos GD, Hitsman B. Treatment adherence in a smoking cessation clinical trial for individuals with current or past major depressive disorder: Predictors and association with cessation. Addict Behav 2023; 143:107686. [PMID: 36893514 PMCID: PMC10122701 DOI: 10.1016/j.addbeh.2023.107686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Individuals with major depressive disorder (MDD) exhibit high rates of tobacco use and lower responsiveness to tobacco cessation treatments. Treatment adherence is a strong predictor of treatment outcomes in the general population but has not been evaluated in this under-served community of smokers with MDD. METHODS We used data from a randomized clinical trial on smoking cessation treatment among 300 smokers with MDD to examine the rate of adherence (medication and counseling), the association of adherence with cessation outcomes, and factors associated with adherence, including demographic and smoking characteristics, psychiatric characteristics, smoking cessation processes (e.g., withdrawal, reinforcers), and treatment-related side effects (e.g., nausea). RESULTS Overall, 43.7% of participants were adherent with medication and 63.0% were adherent with counseling. Medication adherence was significantly associated with cessation, with 32.1% of adherent vs. 13.0% of non-adherent participants quitting smoking at EOT. Counseling adherence was also significantly associated with cessation, with 32.3% of adherent vs. 2.7% of non-adherent participants quitting smoking. Multivariate regression models showed that medication adherence was associated with higher engagement in complementary reinforcers and higher baseline smoking reward, while counseling adherence was associated with identifying as female, lower alcohol use and nicotine dependence, higher baseline smoking reward, and higher engagement in substitute and complementary reinforcers within the first weeks of medication use. CONCLUSIONS As with the general population of smokers, non-adherence to treatment in smokers experiencing depression is widespread and a significant barrier to cessation. Interventions that target reinforcers may improve rates of treatment adherence.
Collapse
Affiliation(s)
- Robert Schnoll
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States.
| | - Gabrielle M Barrila
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - ShelDan Dalsimer
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Mackenzie Hosie Quinn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Anna-Marika Bauer
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Erica Fox
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, United States
| | - Matthew Olonoff
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, United States
| | - Nancy C Jao
- Department of Psychology, Rosalind Franklin University of Medicine and Science, United States
| | - Frank Leone
- Pulmonary, Allergy, & Critical Care Division, University of Pennsylvania, United States
| | - Mark D Huffman
- Department of Medicine, Washington University School of Medicine in St. Louis, United States
| | - Sadiya S Khan
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, United States
| | - Jacqueline K Gollan
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, United States
| | - George D Papandonatos
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, United States
| | - Brian Hitsman
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, United States
| |
Collapse
|
6
|
Abstract
Background Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review first published in 2007. Objectives To assess the effectiveness of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. Search methods We searched the Cochrane Tobacco Addiction Group's Specialised Register in April 2022 for trials, using relevant terms in the title or abstract, or as keywords. The register is compiled from searches of CENTRAL, MEDLINE, Embase, and PsycINFO. Selection criteria We included randomised controlled trials that compared the treatment drug with placebo, another smoking cessation drug, e‐cigarettes, or no medication. We excluded trials that did not report a minimum follow‐up period of six months from baseline. Data collection and analysis We followed standard Cochrane methods. Our main outcome was abstinence from smoking at longest follow‐up using the most rigorous definition of abstinence, preferring biochemically validated rates where reported. We pooled risk ratios (RRs), using the Mantel‐Haenszel fixed‐effect model. We also reported the number of people reporting serious adverse events (SAEs). Main results We included 75 trials of 45,049 people; 45 were new for this update. We rated 22 at low risk of bias, 18 at high risk, and 35 at unclear risk. We found moderate‐certainty evidence (limited by heterogeneity) that cytisine helps more people to quit smoking than placebo (RR 1.30, 95% confidence interval (CI) 1.15 to 1.47; I2 = 83%; 4 studies, 4623 participants), and no evidence of a difference in the number reporting SAEs (RR 1.04, 95% CI 0.78 to 1.37; I2 = 0%; 3 studies, 3781 participants; low‐certainty evidence). SAE evidence was limited by imprecision. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than placebo (RR 2.32, 95% CI 2.15 to 2.51; I2 = 60%, 41 studies, 17,395 participants), and moderate‐certainty evidence that people taking varenicline are more likely to report SAEs than those not taking it (RR 1.23, 95% CI 1.01 to 1.48; I2 = 0%; 26 studies, 14,356 participants). While point estimates suggested increased risk of cardiac SAEs (RR 1.20, 95% CI 0.79 to 1.84; I2 = 0%; 18 studies, 7151 participants; low‐certainty evidence), and decreased risk of neuropsychiatric SAEs (RR 0.89, 95% CI 0.61 to 1.29; I2 = 0%; 22 studies, 7846 participants; low‐certainty evidence), in both cases evidence was limited by imprecision, and confidence intervals were compatible with both benefit and harm. Pooled results from studies that randomised people to receive cytisine or varenicline found no clear evidence of difference in quit rates (RR 1.00, 95% CI 0.79 to 1.26; I2 = 65%; 2 studies, 2131 participants; low‐certainty evidence) and reported SAEs (RR 0.67, 95% CI 0.44 to 1.03; I2 = 45%; 2 studies, 2017 participants; low‐certainty evidence). However, the evidence was limited by imprecision, and confidence intervals incorporated the potential for benefit from either cytisine or varenicline. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than bupropion (RR 1.36, 95% CI 1.25 to 1.49; I2 = 0%; 9 studies, 7560 participants), and no clear evidence of difference in rates of SAEs (RR 0.89, 95% CI 0.61 to 1.31; I2 = 0%; 5 studies, 5317 participants), neuropsychiatric SAEs (RR 1.05, 95% CI 0.16 to 7.04; I2 = 10%; 2 studies, 866 participants), or cardiac SAEs (RR 3.17, 95% CI 0.33 to 30.18; I2 = 0%; 2 studies, 866 participants). Evidence of harms was of low certainty, limited by imprecision. We found high‐certainty evidence that varenicline helps more people to quit than a single form of nicotine replacement therapy (NRT) (RR 1.25, 95% CI 1.14 to 1.37; I2 = 28%; 11 studies, 7572 participants), and low‐certainty evidence, limited by imprecision, of fewer reported SAEs (RR 0.70, 95% CI 0.50 to 0.99; I2 = 24%; 6 studies, 6535 participants). We found no data on neuropsychiatric or cardiac SAEs. We found no clear evidence of a difference in quit rates between varenicline and dual‐form NRT (RR 1.02, 95% CI 0.87 to 1.20; I2 = 0%; 5 studies, 2344 participants; low‐certainty evidence, downgraded because of imprecision). While pooled point estimates suggested increased risk of SAEs (RR 2.15, 95% CI 0.49 to 9.46; I2 = 0%; 4 studies, 1852 participants) and neuropsychiatric SAEs (RR 4.69, 95% CI 0.23 to 96.50; I2 not estimable as events only in 1 study; 2 studies, 764 participants), and reduced risk of cardiac SAEs (RR 0.32, 95% CI 0.01 to 7.88; I2 not estimable as events only in 1 study; 2 studies, 819 participants), in all three cases evidence was of low certainty and confidence intervals were very wide, encompassing both substantial harm and benefit. Authors' conclusions Cytisine and varenicline both help more people to quit smoking than placebo or no medication. Varenicline is more effective at helping people to quit smoking than bupropion, or a single form of NRT, and may be as or more effective than dual‐form NRT. People taking varenicline are probably more likely to experience SAEs than those not taking it, and while there may be increased risk of cardiac SAEs and decreased risk of neuropsychiatric SAEs, evidence was compatible with both benefit and harm. Cytisine may lead to fewer people reporting SAEs than varenicline. Based on studies that directly compared cytisine and varenicline, there may be no difference or a benefit from either medication for quitting smoking. Future trials should test the effectiveness and safety of cytisine compared with varenicline and other pharmacotherapies, and should also test variations in dose and duration. There is limited benefit to be gained from more trials testing the effect of standard‐dose varenicline compared with placebo for smoking cessation. Further trials on varenicline should test variations in dose and duration, and compare varenicline with e‐cigarettes for smoking cessation. Can medications like varenicline and cytisine (nicotine receptor partial agonists) help people to stop smoking and do they cause unwanted effects? Key messages · Varenicline can help people to stop smoking for at least 6 months. Evidence shows it works better than bupropion and using only one type of nicotine replacement therapy (e.g. only patches). Quit rates might be similar to using more than one type of nicotine replacement therapy at the same time (e.g. patches and gum together). · Cytisine can help people to stop smoking for at least 6 months. It may work as well as varenicline, but future evidence may show that while it helps, it is not quite as helpful as varenicline. · Future studies should test the effectiveness and safety of cytisine compared with varenicline and other stop‐smoking medications, and should also investigate giving cytisine or varenicline at different doses and for different lengths of time. What are 'nicotine receptor partial agonists'? Smoking tobacco is extremely bad for people’s health. For people who smoke, quitting is the best thing they can do to improve their health. Many people find it difficult to quit smoking. Nicotine receptor partial agonists (NRPAs) are a type of medication used to help people to stop smoking. They help to reduce the withdrawal symptoms people experience when they stop smoking, like cravings and unpleasant mood changes. They also reduce the pleasure people usually experience when they smoke. The most widely‐available treatment in this drug type is varenicline. Cytisine is another, similar medication. They may cause unwanted effects such as feeling sick (nausea) and other stomach problems, difficulties sleeping, abnormal dreams, and headache. They may also lead to potentially serious unwanted effects, such as suicidal thoughts, heart problems and raised blood pressure. What did we want to find out? We wanted to find out if using NRPAs can help people to quit smoking, and if they cause unwanted effects. We wanted to know: · how many people stopped smoking for at least 6 months; and · how many people had unwanted effects. What did we do? We searched for studies that investigated NRPAs used to help people quit smoking. People in the studies had to be chosen at random to receive an NRPA, or another NRPA, placebo (medication like the NRPA but with no active ingredients) or no treatment. They had to be adult tobacco smokers who wanted to stop smoking. What did we find? We found 75 studies that compared NRPAs with: · placebo or no medicine; · nicotine replacement therapy, such as patches or gum; · bupropion (another medicine to help people stop smoking); · another NRPA; · e‐cigarettes. The USA hosted the most studies (28 studies). Other studies took place in a range of countries across the world, some in several countries. Main results People are more likely to stop smoking for at least six months using varenicline than using placebo (41 studies, 17,395 people), bupropion (9 studies, 7560 people), or just one type of nicotine replacement therapy, like patches alone (11 studies, 7572 people). They may be just as likely to quit as people using two or more kinds of nicotine replacement therapy, like patches and gum together (5 studies, 2344 people). Cytisine probably helps more people to stop smoking than placebo (4 studies, 4623 people) and may be just as effective as varenicline (2 studies, 2131 people). For every 100 people using varenicline to stop smoking, 21 to 25 might successfully stop, compared with only 18 of 100 people using bupropion, 18 of 100 people using a single form of nicotine‐replacement therapy, and 20 of 100 using two or more kinds of nicotine‐replacement therapy. For every 100 people using cytisine to stop smoking, 18 to 23 might successfully stop. The most common unwanted effect of varenicline is nausea, but this is mostly at mild or moderate levels and usually clears over time. People taking varenicline likely have an increased chance of a more serious unwanted effect that could result in going to hospital, however these are still rare (2.7% to 4% of people on varenicline, compared with 2.7% of people without) and may include many that are unrelated to varenicline. People taking cytisine may also have a slightly increased chance of serious unwanted effects compared with people not taking it, but this may be less likely compared with varenicline. What are the limitations of the evidence? The evidence for some of our results is very reliable. We’re very confident that varenicline helps people to quit smoking better than many alternatives. We’re less sure of some other results because fewer or smaller studies provided evidence. Several results suggest one treatment is better or less harmful than another, but the opposite could still be true. How up to date is the evidence? The evidence is up to date to 29 April 2022.
Collapse
|
7
|
Hajizadeh A, Howes S, Theodoulou A, Klemperer E, Hartmann-Boyce J, Livingstone-Banks J, Lindson N. Antidepressants for smoking cessation. Cochrane Database Syst Rev 2023; 5:CD000031. [PMID: 37230961 PMCID: PMC10207863 DOI: 10.1002/14651858.cd000031.pub6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND The pharmacological profiles and mechanisms of antidepressants are varied. However, there are common reasons why they might help people to stop smoking tobacco: nicotine withdrawal can produce short-term low mood that antidepressants may relieve; and some antidepressants may have a specific effect on neural pathways or receptors that underlie nicotine addiction. OBJECTIVES To assess the evidence for the efficacy, harms, and tolerability of medications with antidepressant properties in assisting long-term tobacco smoking cessation in people who smoke cigarettes. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group Specialised Register, most recently on 29 April 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) in people who smoked, comparing antidepressant medications with placebo or no pharmacological treatment, an alternative pharmacotherapy, or the same medication used differently. We excluded trials with fewer than six months of follow-up from efficacy analyses. We included trials with any follow-up length for our analyses of harms. DATA COLLECTION AND ANALYSIS We extracted data and assessed risk of bias using standard Cochrane methods. Our primary outcome measure was smoking cessation after at least six months' follow-up. We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Our secondary outcomes were harms and tolerance outcomes, including adverse events (AEs), serious adverse events (SAEs), psychiatric AEs, seizures, overdoses, suicide attempts, death by suicide, all-cause mortality, and trial dropouts due to treatment. We carried out meta-analyses where appropriate. MAIN RESULTS We included a total of 124 studies (48,832 participants) in this review, with 10 new studies added to this update version. Most studies recruited adults from the community or from smoking cessation clinics; four studies focused on adolescents (with participants between 12 and 21 years old). We judged 34 studies to be at high risk of bias; however, restricting analyses only to studies at low or unclear risk of bias did not change clinical interpretation of the results. There was high-certainty evidence that bupropion increased smoking cessation rates when compared to placebo or no pharmacological treatment (RR 1.60, 95% CI 1.49 to 1.72; I2 = 16%; 50 studies, 18,577 participants). There was moderate-certainty evidence that a combination of bupropion and varenicline may have resulted in superior quit rates to varenicline alone (RR 1.21, 95% CI 0.95 to 1.55; I2 = 15%; 3 studies, 1057 participants). However, there was insufficient evidence to establish whether a combination of bupropion and nicotine replacement therapy (NRT) resulted in superior quit rates to NRT alone (RR 1.17, 95% CI 0.95 to 1.44; I2 = 43%; 15 studies, 4117 participants; low-certainty evidence). There was moderate-certainty evidence that participants taking bupropion were more likely to report SAEs than those taking placebo or no pharmacological treatment. However, results were imprecise and the CI also encompassed no difference (RR 1.16, 95% CI 0.90 to 1.48; I2 = 0%; 23 studies, 10,958 participants). Results were also imprecise when comparing SAEs between people randomised to a combination of bupropion and NRT versus NRT alone (RR 1.52, 95% CI 0.26 to 8.89; I2 = 0%; 4 studies, 657 participants) and randomised to bupropion plus varenicline versus varenicline alone (RR 1.23, 95% CI 0.63 to 2.42; I2 = 0%; 5 studies, 1268 participants). In both cases, we judged evidence to be of low certainty. There was high-certainty evidence that bupropion resulted in more trial dropouts due to AEs than placebo or no pharmacological treatment (RR 1.44, 95% CI 1.27 to 1.65; I2 = 2%; 25 studies, 12,346 participants). However, there was insufficient evidence that bupropion combined with NRT versus NRT alone (RR 1.67, 95% CI 0.95 to 2.92; I2 = 0%; 3 studies, 737 participants) or bupropion combined with varenicline versus varenicline alone (RR 0.80, 95% CI 0.45 to 1.45; I2 = 0%; 4 studies, 1230 participants) had an impact on the number of dropouts due to treatment. In both cases, imprecision was substantial (we judged the evidence to be of low certainty for both comparisons). Bupropion resulted in inferior smoking cessation rates to varenicline (RR 0.73, 95% CI 0.67 to 0.80; I2 = 0%; 9 studies, 7564 participants), and to combination NRT (RR 0.74, 95% CI 0.55 to 0.98; I2 = 0%; 2 studies; 720 participants). However, there was no clear evidence of a difference in efficacy between bupropion and single-form NRT (RR 1.03, 95% CI 0.93 to 1.13; I2 = 0%; 10 studies, 7613 participants). We also found evidence that nortriptyline aided smoking cessation when compared with placebo (RR 2.03, 95% CI 1.48 to 2.78; I2 = 16%; 6 studies, 975 participants), and some evidence that bupropion resulted in superior quit rates to nortriptyline (RR 1.30, 95% CI 0.93 to 1.82; I2 = 0%; 3 studies, 417 participants), although this result was subject to imprecision. Findings were sparse and inconsistent as to whether antidepressants, primarily bupropion and nortriptyline, had a particular benefit for people with current or previous depression. AUTHORS' CONCLUSIONS There is high-certainty evidence that bupropion can aid long-term smoking cessation. However, bupropion may increase SAEs (moderate-certainty evidence when compared to placebo/no pharmacological treatment). There is high-certainty evidence that people taking bupropion are more likely to discontinue treatment compared with people receiving placebo or no pharmacological treatment. Nortriptyline also appears to have a beneficial effect on smoking quit rates relative to placebo, although bupropion may be more effective. Evidence also suggests that bupropion may be as successful as single-form NRT in helping people to quit smoking, but less effective than combination NRT and varenicline. In most cases, a paucity of data made it difficult to draw conclusions regarding harms and tolerability. Further studies investigating the efficacy of bupropion versus placebo are unlikely to change our interpretation of the effect, providing no clear justification for pursuing bupropion for smoking cessation over other licensed smoking cessation treatments; namely, NRT and varenicline. However, it is important that future studies of antidepressants for smoking cessation measure and report on harms and tolerability.
Collapse
Affiliation(s)
- Anisa Hajizadeh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Seth Howes
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Elias Klemperer
- Departments of Psychological Sciences & Psychiatry, University of Vermont, Burlington, VT, USA
| | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Livingstone-Banks J, Fanshawe TR, Thomas KH, Theodoulou A, Hajizadeh A, Hartman L, Lindson N. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 2023; 5:CD006103. [PMID: 37142273 PMCID: PMC10169257 DOI: 10.1002/14651858.cd006103.pub8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review first published in 2007. OBJECTIVES To assess the effectiveness of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group's Specialised Register in April 2022 for trials, using relevant terms in the title or abstract, or as keywords. The register is compiled from searches of CENTRAL, MEDLINE, Embase, and PsycINFO. SELECTION CRITERIA: We included randomised controlled trials that compared the treatment drug with placebo, another smoking cessation drug, e-cigarettes, or no medication. We excluded trials that did not report a minimum follow-up period of six months from baseline. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods. Our main outcome was abstinence from smoking at longest follow-up using the most rigorous definition of abstinence, preferring biochemically validated rates where reported. We pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. We also reported the number of people reporting serious adverse events (SAEs). MAIN RESULTS We included 75 trials of 45,049 people; 45 were new for this update. We rated 22 at low risk of bias, 18 at high risk, and 35 at unclear risk. We found moderate-certainty evidence (limited by heterogeneity) that cytisine helps more people to quit smoking than placebo (RR 1.30, 95% confidence interval (CI) 1.15 to 1.47; I2 = 83%; 4 studies, 4623 participants), and no evidence of a difference in the number reporting SAEs (RR 1.04, 95% CI 0.78 to 1.37; I2 = 0%; 3 studies, 3781 participants; low-certainty evidence). SAE evidence was limited by imprecision. We found no data on neuropsychiatric or cardiac SAEs. We found high-certainty evidence that varenicline helps more people to quit than placebo (RR 2.32, 95% CI 2.15 to 2.51; I2 = 60%, 41 studies, 17,395 participants), and moderate-certainty evidence that people taking varenicline are more likely to report SAEs than those not taking it (RR 1.23, 95% CI 1.01 to 1.48; I2 = 0%; 26 studies, 14,356 participants). While point estimates suggested increased risk of cardiac SAEs (RR 1.20, 95% CI 0.79 to 1.84; I2 = 0%; 18 studies, 7151 participants; low-certainty evidence), and decreased risk of neuropsychiatric SAEs (RR 0.89, 95% CI 0.61 to 1.29; I2 = 0%; 22 studies, 7846 participants; low-certainty evidence), in both cases evidence was limited by imprecision, and confidence intervals were compatible with both benefit and harm. Pooled results from studies that randomised people to receive cytisine or varenicline showed that more people in the varenicline arm quit smoking (RR 0.83, 95% CI 0.66 to 1.05; I2 = 0%; 2 studies, 2131 participants; moderate-certainty evidence) and reported SAEs (RR 0.67, 95% CI 0.44 to 1.03; I2 = 45%; 2 studies, 2017 participants; low-certainty evidence). However, the evidence was limited by imprecision, and confidence intervals incorporated the potential for benefit from either cytisine or varenicline. We found no data on neuropsychiatric or cardiac SAEs. We found high-certainty evidence that varenicline helps more people to quit than bupropion (RR 1.36, 95% CI 1.25 to 1.49; I2 = 0%; 9 studies, 7560 participants), and no clear evidence of difference in rates of SAEs (RR 0.89, 95% CI 0.61 to 1.31; I2 = 0%; 5 studies, 5317 participants), neuropsychiatric SAEs (RR 1.05, 95% CI 0.16 to 7.04; I2 = 10%; 2 studies, 866 participants), or cardiac SAEs (RR 3.17, 95% CI 0.33 to 30.18; I2 = 0%; 2 studies, 866 participants). Evidence of harms was of low certainty, limited by imprecision. We found high-certainty evidence that varenicline helps more people to quit than a single form of nicotine replacement therapy (NRT) (RR 1.25, 95% CI 1.14 to 1.37; I2 = 28%; 11 studies, 7572 participants), and low-certainty evidence, limited by imprecision, of fewer reported SAEs (RR 0.70, 95% CI 0.50 to 0.99; I2 = 24%; 6 studies, 6535 participants). We found no data on neuropsychiatric or cardiac SAEs. We found no clear evidence of a difference in quit rates between varenicline and dual-form NRT (RR 1.02, 95% CI 0.87 to 1.20; I2 = 0%; 5 studies, 2344 participants; low-certainty evidence, downgraded because of imprecision). While pooled point estimates suggested increased risk of SAEs (RR 2.15, 95% CI 0.49 to 9.46; I2 = 0%; 4 studies, 1852 participants) and neuropsychiatric SAEs (RR 4.69, 95% CI 0.23 to 96.50; I2 not estimable as events only in 1 study; 2 studies, 764 participants), and reduced risk of cardiac SAEs (RR 0.32, 95% CI 0.01 to 7.88; I2 not estimable as events only in 1 study; 2 studies, 819 participants), in all three cases evidence was of low certainty and confidence intervals were very wide, encompassing both substantial harm and benefit. AUTHORS' CONCLUSIONS Cytisine and varenicline both help more people to quit smoking than placebo or no medication. Varenicline is more effective at helping people to quit smoking than bupropion, or a single form of NRT, and may be as or more effective than dual-form NRT. People taking varenicline are probably more likely to experience SAEs than those not taking it, and while there may be increased risk of cardiac SAEs and decreased risk of neuropsychiatric SAEs, evidence was compatible with both benefit and harm. Cytisine may lead to fewer people reporting SAEs than varenicline. Based on studies that directly compared cytisine and varenicline, there may be a benefit from varenicline for quitting smoking, however further evidence could strengthen this finding or demonstrate a benefit from cytisine. Future trials should test the effectiveness and safety of cytisine compared with varenicline and other pharmacotherapies, and should also test variations in dose and duration. There is limited benefit to be gained from more trials testing the effect of standard-dose varenicline compared with placebo for smoking cessation. Further trials on varenicline should test variations in dose and duration, and compare varenicline with e-cigarettes for smoking cessation.
Collapse
Affiliation(s)
| | - Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Kyla H Thomas
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Anisa Hajizadeh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Lilian Hartman
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Siegel SD, Tindle HA, Bergen AW, Tyndale RF, Schnoll R. The Use of Biomarkers to Guide Precision Treatment for Tobacco Use. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37089247 PMCID: PMC10121195 DOI: 10.1016/j.addicn.2023.100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This review summarizes the evidence to date on the development of biomarkers for personalizing the pharmacological treatment of combustible tobacco use. First, the latest evidence on FDA-approved medications is considered, demonstrating that, while these medications offer real benefits, they do not contribute to smoking cessation in approximately two-thirds of cases. Second, the case for using biomarkers to guide tobacco treatment is made based on the potential to increase medication effectiveness and uptake and reduce side effects. Next, the FDA framework of biomarker development is presented along with the state of science on biomarkers for tobacco treatment, including a review of the nicotine metabolite ratio, electroencephalographic event-related potentials, and other biomarkers utilized for risk feedback. We conclude with a discussion of the challenges and opportunities for the translation of biomarkers to guide tobacco treatment and propose priorities for future research.
Collapse
|
10
|
Lima DR, Guimaraes-Pereira BBS, Mannes ZL, Carvalho CFC, Loreto AR, Davanso LC, Frallonardo FP, Ismael F, de Andrade AG, Castaldelli-Maia JM. The effect of a real-world intervention for smoking cessation in Adults with and without comorbid psychiatric and substance use disorders: A one-year follow-up study. Psychiatry Res 2022; 315:114722. [PMID: 35841703 PMCID: PMC11055494 DOI: 10.1016/j.psychres.2022.114722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
This study evaluated short-term abstinence and prolonged abstinence following a real-world intervention for smoking cessation in a sample of 1,213 adults with nicotine dependence only (ND), nicotine dependence and past history of another substance use disorder (ND-SUD), nicotine dependence and a non-substance use mental health disorder (ND-MD), or nicotine dependence and comorbid substance use disorder and mental health disorder (ND-SUMD). Participants received six sessions of group Cognitive Behavioral Therapy (CBT) and pharmacotherapy. Abstinence was assessed following completion of treatment and at 12-month follow-up. Logistic regression and survival analyses were performed. Participants who were lost to follow-up were included as censored and baseline differences were used as covariates in multivariate analyses. Rates of short-term abstinence and prolonged abstinence were significantly different between ND and ND-SUMD (20.9% versus 36.5%; 14.9% versus 22.4%, respectively). Among participants with follow-up, 37.7% were abstinent at 12-month. Diagnostic group was not associated with abstinence at 12-month follow-up after adjusting for nicotine dependence severity, which was associated with lower likelihood of abstinence (HR=1.11;95%CI:1.03-1.19). CBT plus pharmacotherapy had a positive effect on smoking cessation among the participants in this study. Special attention should be given to adults with more severe nicotine dependence and comorbid psychiatric and substance use disorders.
Collapse
Affiliation(s)
- Danielle Ruiz Lima
- Grupo Interdisciplinar de Estudos de Alcool e outras Drogas (GREA), Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR.
| | | | - Zachary L Mannes
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, U.S., 10032
| | | | - Aline Rodrigues Loreto
- ABC Center for Mental Health Studies, Santo André - SP, 09060-870, Santo Andre, SP, Brazil
| | - Lucas Carvalho Davanso
- Department of Neuroscience, Medical School, ABC Foundation, Santo André - SP, 09060-870, Santo Andre, SP, BR
| | - Fernanda Piotto Frallonardo
- ABC Center for Mental Health Studies, Santo André - SP, 09060-870, Santo Andre, SP, Brazil; Universidade Municipal de São Caetano do Sul - Campus Centro, São Caetano do Sul, Sao Paulo, 09521-160, Brazil
| | - Flavia Ismael
- ABC Center for Mental Health Studies, Santo André - SP, 09060-870, Santo Andre, SP, Brazil; Universidade Municipal de São Caetano do Sul - Campus Centro, São Caetano do Sul, Sao Paulo, 09521-160, Brazil
| | - Arthur Guerra de Andrade
- Grupo Interdisciplinar de Estudos de Alcool e outras Drogas (GREA), Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Department of Neuroscience, Medical School, ABC Foundation, Santo André - SP, 09060-870, Santo Andre, SP, BR; ABC Center for Mental Health Studies, Santo André - SP, 09060-870, Santo Andre, SP, Brazil
| | - Joao Mauricio Castaldelli-Maia
- Grupo Interdisciplinar de Estudos de Alcool e outras Drogas (GREA), Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Department of Neuroscience, Medical School, ABC Foundation, Santo André - SP, 09060-870, Santo Andre, SP, BR; ABC Center for Mental Health Studies, Santo André - SP, 09060-870, Santo Andre, SP, Brazil; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, U.S., 10032
| |
Collapse
|