1
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
2
|
Kochoni E, Doose C, Gonzalez P, Fortin C. Role of iron in gene expression and in the modulation of copper uptake in a freshwater alga: Insights on Cu and Fe assimilation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119311. [PMID: 35439593 DOI: 10.1016/j.envpol.2022.119311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Metal uptake and toxicity can generally be related to its aqueous speciation and to the presence of competitive ions as described by the biotic ligand model. Beyond these simple chemical interactions at the surface of aquatic organisms, several internal biological feedback mechanisms can also modulate metal uptake. This is particularly important for essential elements for which specific transport systems were developed over the course of evolution. Based on the results of short-term Cu2+ uptake experiments and on the analysis of the expression of certain genes involved in Cu and Fe homeostasis, we studied the effects of Fe3+ on Cu2+ uptake by the freshwater green alga Chlamydomonas reinhardtii. We observed a significant increase in Cu2+ uptake rate in algal cells acclimated to a low Fe3+ medium up to 4.7 times greater compared to non-acclimated algal cells. The overexpression of the ferroxidase FOX1 and permease FTR1 genes suggests an activation of the high affinity Fe3+ assimilation system, which could constitute a plausible explanation for the increase in Cu2+ uptake rate in acclimatized algae. We show that Fe availability can have a significant impact on Cu uptake. Our observations reinforce the importance of considering physiological factors to better predict metal bioavailability.
Collapse
Affiliation(s)
- Emeric Kochoni
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Caroline Doose
- Laboratoire de Biologie des Organismes et des écosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Station Marine Concarneau, 29900, Concarneau, France
| | - Patrice Gonzalez
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33600, Pessac, France
| | - Claude Fortin
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
3
|
Burrow K, Young W, Hammer N, Safavi S, Scholze M, McConnell M, Carne A, Barr D, Reid M, Bekhit AED. The Effect of the Supplementation of a Diet Low in Calcium and Phosphorus with Either Sheep Milk or Cow Milk on the Physical and Mechanical Characteristics of Bone using A Rat Model. Foods 2020; 9:E1070. [PMID: 32784633 PMCID: PMC7466322 DOI: 10.3390/foods9081070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study assessed the effect of cow milk (CM) and sheep milk (SM) consumption on the micro-structure, mechanical function, and mineral composition of rat femora in a male weanling rat model. Male weanling rats were fed a basal diet with a 50% reduction in calcium and phosphorus content (low Ca/P-diet) supplemented with either SM or CM. Rats were fed for 28 days, after which the femora were harvested and stored. The femora were analyzed by μ-CT, three-point bending, and inductively coupled plasma-mass spectrometry (ICP-MS). The addition of either milk to the low Ca/P-diet significantly increased (p < 0.05) trabecular bone volume, trabecular bone surface density, trabecular number, cortical bone volume, and maximum force, when compared to rats that consumed only the low Ca/P-diet. The consumption of either milk resulted in a significant decrease (p < 0.05) in trabecular pattern factor, and cortical bone surface to volume ratio when compared to rats that consumed only the low Ca/P-diet. The results were achieved with a lower consumption of SM compared to that of CM (p < 0.05). This work indicates that SM and CM can help overcome the effects on bone of a restriction in calcium and phosphorus intake.
Collapse
Affiliation(s)
- Keegan Burrow
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Wayne Young
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Manawatu Mail Centre, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria;
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Fraunhofer IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany
| | - Sarah Safavi
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Straße der Nationen, 62, 09111 Chemnitz, Germany;
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - Alan Carne
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand;
| | - David Barr
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Malcolm Reid
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Burrow K, Young W, McConnell M, Carne A, Barr D, Reid M, Bekhit AED. The Effect of Sheep and Cow Milk Supplementation of a Low Calcium Diet on the Distribution of Macro and Trace Minerals in the Organs of Weanling Rats. Nutrients 2020; 12:E594. [PMID: 32106433 PMCID: PMC7146164 DOI: 10.3390/nu12030594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to investigate the effect of either sheep or cow milk supplementation to a low calcium and phosphorus diet on growth and organ mineral distribution in weanling rats. Rats were fed diets consisting of either a control chow, a 50% reduced calcium and phosphorous chow (low Ca/P), low Ca/P and sheep milk, or low Ca/P and cow milk diet for 28 days. Food intake of the rats, the growth rate of the rats, and the concentrations of minerals in the soft organs and serum were determined. Rats fed the low Ca/P diet alone had lower weight gain than rats consuming either of the milk-supplemented diets (p < 0.05). Both sheep milk and cow milk supplementation overcame the effects of consuming a diet restricted in calcium and phosphorus but the sheep milk was effective at a significantly lower level of milk intake (p < 0.05). Significant differences (p < 0.05) in essential and trace mineral concentrations due to milk type were observed in the kidney, spleen, and liver. For non-essential minerals, significant differences (p < 0.05), related to diet, were observed in all organs for arsenic, cesium, rubidium, and strontium concentrations.
Collapse
Affiliation(s)
- Keegan Burrow
- Department of Food Science, University of Otago PO Box 56, Dunedin 9054, New Zealand
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Wayne Young
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Manawatu Mail Centre, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago PO Box 56, Dunedin 9054, New Zealand;
| | - Alan Carne
- Department of Biochemistry, University of Otago PO Box 56, Dunedin 9054, New Zealand;
| | - David Barr
- Department of Chemistry, University of Otago PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Malcolm Reid
- Department of Chemistry, University of Otago PO Box 56, Dunedin 9054, New Zealand; (D.B.); (M.R.)
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
|
6
|
Burrow K, Young W, McConnell M, Carne A, Barr D, Reid M, Bekhit AED. The Distribution of Essential, Trace, and Nonessential Minerals in Weanling Male Rats Fed Sheep or Cow Milk. Mol Nutr Food Res 2018; 62:e1800482. [PMID: 30095861 DOI: 10.1002/mnfr.201800482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Indexed: 12/22/2022]
Abstract
SCOPE The aim of the study is to determine the effects of sheep milk consumption in comparison to cow milk on the mineral distribution in the soft organs and serum in a growing animal model system. As the mineral composition of cow and sheep milk differs, different effects on the bio-accumulations in the body may be observed. Differences in the mineral composition of cow and sheep milk may lead to different bioavailability or accumulation of minerals in the body. Newly weaned rats were fed either cow milk, sheep milk, or sheep milk diluted so that it had the same solid content as cow milk. At the end of the feeding trial, the concentration of minerals in the organs and plasma of the rats was assessed. The results indicate that the consumption of the high level of minerals in sheep milk does not have any negative effects in the rat model. METHODS AND RESULTS Newly weaned male rats were fed ad libitum for 28 days on either cow milk, sheep milk, or sheep milk diluted to have the same concentration of milk solids as cow milk. Animals were euthanized and the soft organs and serum were harvested and then analyzed for mineral composition by inductively coupled plasma MS. Rats fed sheep milk had lower iron concentrations in the liver and higher concentrations of rubidium and cesium in all of the soft organs. The growth rate of the rats was not affected by the type of milk consumed. CONCLUSION The concentration of essential and trace minerals in the liver is found to be significantly different between rats fed sheep milk compared to those fed cow milk (p < 0.05). The consumption of sheep milk does not affect the growth of animals.
Collapse
Affiliation(s)
- Keegan Burrow
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Wayne Young
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Barr
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Malcom Reid
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
7
|
Bowers K, Srai SKS. The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 2018; 19:813-822. [PMID: 29952128 DOI: 10.1111/tra.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
Metal ion transporters of the Zrt- and Irt-like protein (ZIP, or SLC39A) family transport zinc, iron, manganese and/or cadmium across cellular membranes and into the cytosol. The 14 human ZIP family proteins are expressed in a wide variety of tissues and function in many different cellular processes. Many of these proteins (including ZIP1, 2, 3, 4, 5, 6/10, 8, 9, 11, 12, 14) are situated, at least some of the time, on the plasma membrane, where they mediate metal ion uptake into cells. Their level on the cell surface can be controlled rapidly via protein trafficking in response to the ions they transport. For example, the cell surface level of many ZIPs (including ZIP1, 3, 4, 8 and 12) is mediated by the available concentration of zinc. Zinc depletion causes a decrease in endocytosis and degradation, resulting in more ZIP on the surface to take up the essential ion. ZIP levels on the cell surface are a balance between endocytosis, recycling and degradation. We review the trafficking mechanisms of human ZIP proteins, highlighting possible targeting motifs and suggesting a model of zinc-mediated endocytic trafficking. We also provide two possible models for ZIP14 trafficking and degradation.
Collapse
Affiliation(s)
- Katherine Bowers
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Surjit K S Srai
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
8
|
Burrow K, Young W, McConnell M, Carne A, Bekhit AED. Do Dairy Minerals Have a Positive Effect on Bone Health? Compr Rev Food Sci Food Saf 2018; 17:989-1005. [DOI: 10.1111/1541-4337.12364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Keegan Burrow
- Dept. of Food Science; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Wayne Young
- AgResearch Ltd.; Grasslands Research Centre; Private Bag 11008, Manawatu Mail Centre Palmerston North 4442 New Zealand
| | - Michelle McConnell
- Dept. of Microbiology and Immunology; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Alan Carne
- Dept. of Biochemistry; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Alaa El-Din Bekhit
- Dept. of Food Science; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
9
|
Schröder B, Saftig P. Intramembrane proteolysis within lysosomes. Ageing Res Rev 2016; 32:51-64. [PMID: 27143694 DOI: 10.1016/j.arr.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid β production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.
Collapse
|
10
|
Hennigar SR, McClung JP. Hepcidin Attenuates Zinc Efflux in Caco-2 Cells. J Nutr 2016; 146:2167-2173. [PMID: 27655758 DOI: 10.3945/jn.116.237081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepcidin mediates the hypoferremia of inflammation by inhibiting iron transfer into circulation; however, a regulator for the hypozincemia observed in individuals with acute and chronic inflammatory and infectious diseases is not known. OBJECTIVE The objective of this study was to determine the effects of hepcidin on zinc transport in intestinal epithelial cells. METHODS Differentiated human intestinal Caco-2 cells were untreated or treated with 1 μM hepcidin for 3-24 h. Zinc transport was assessed in cells seeded on Transwell inserts. Media from the apical and basolateral chambers were collected, and zinc concentrations were determined using 67Zn. Labile zinc pools were imaged and quantified in cells loaded with FluoZin-3-AM and expression of metallothionein and the zinc transporters zrt-/irt-like protein (ZIP)4 (SLC39A4), ZIP5 (SLC39A5), ZIP14 (SLC39A14), and zinc transporter 1 (ZnT1) (SLC30A1) was determined. Cells were transfected with SLC40A1- or SLC30A1-specific small interfering RNA to knock down ferroportin and ZnT1 protein, respectively. Cell surface proteins were isolated by cell surface biotinylation and lysosomal and proteasomal degradation was inhibited by treating cells with chloroquine or MG132, respectively. RESULTS Hepcidin attenuated zinc transport, as cells treated with hepcidin exported 26% less 67Zn (P < 0.05) into the basolateral chamber and retained 27% more cellular 67Zn (P < 0.05) than did control cells. Labile zinc decreased, and the mRNA abundance of metallothionein increased by ∼50% in hepcidin-treated cells compared with control cells (P < 0.05). Hepcidin reduced ZnT1 protein by 75% (P < 0.05) compared with control cells. Hepcidin-mediated reductions in zinc export remained in ferroportin knockdown cells compared with untreated controls (P < 0.05), whereas knockdown of ZnT1 inhibited this effect (P ≥ 0.05). Hepcidin significantly reduced biotinylated cell surface ZnT1 compared with control cells (P < 0.05); chloroquine inhibited hepcidin-mediated degradation of ZnT1 (P ≥ 0.05), whereas MG132 had no effect (P < 0.05). CONCLUSIONS Hepcidin reduces intestinal zinc export by post-translationally downregulating ZnT1 through a lysosomal-mediated degradation pathway, indicating that hepcidin may contribute to the hypozincemia of inflammation and infection.
Collapse
Affiliation(s)
- Stephen R Hennigar
- US Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA
| | - James P McClung
- US Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA
| |
Collapse
|
11
|
Hennigar SR, Kelley AM, McClung JP. Metallothionein and Zinc Transporter Expression in Circulating Human Blood Cells as Biomarkers of Zinc Status: a Systematic Review. Adv Nutr 2016; 7:735-46. [PMID: 27422508 PMCID: PMC4942874 DOI: 10.3945/an.116.012518] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc is an essential nutrient for humans; however, a sensitive biomarker to assess zinc status has not been identified. The objective of this systematic review was to compile and assess studies that determined zinc transporter and/or metallothionein expression in various blood cell types and to determine their reliability and sensitivity to changes in dietary zinc. Sixteen studies were identified that determined the expression of zrt-, irt-like protein (ZIP) 1 [solute carrier family (SLC) 39A1], ZIP3 (SLC39A3), ZIP5 (SLC39A5), ZIP6 (SLC39A6), ZIP7 (SLC39A7), ZIP8 (SLC39A8), ZIP10 (SLC39A10), ZIP14 (SLC39A14), zinc transporter (ZnT)1 (SLC30A1), ZnT2 (SLC30A2), ZnT4 (SLC30A4), ZnT5 (SLC30A5), ZnT6 (SLC30A6), ZnT7 (SLC30A7), ZnT9 (SLC30A9), and/or metallothionein in various blood cells isolated from healthy adult men and women in response to zinc supplementation or depletion. Cell types included leukocytes, peripheral blood mononuclear cells, T lymphocytes, monocytes, and erythrocytes. ZIP1, ZnT1, and metallothionein were the most commonly measured proteins. Changes in ZIP1 and ZnT1 in response to zinc supplementation or depletion were not consistent across studies. Leukocyte metallothionein decreased with zinc depletion (-39% change from baseline, <5 mg Zn/d, n = 2 studies) and increased with zinc supplementation in a dose-dependent manner (35%, 15-22 mg Zn/d, n = 7 studies; 267%, 50 mg Zn/d, n = 2 studies) and at the earliest time points measured; however, no change or delayed response was observed in metallothionein in erythrocytes. A greater percentage of studies demonstrated that metallothionein in leukocyte subtypes was a more reliable (100%, n = 12; 69%, n = 16) and responsive (92%, n = 12; 82%, n = 11) indicator of zinc exposure than was plasma zinc, respectively. In conclusion, current evidence indicates that metallothionein in leukocyte subtypes may be a component in determining zinc status.
Collapse
Affiliation(s)
| | | | - James P McClung
- US Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA
| |
Collapse
|