1
|
Jamali F, Mousavi S, Homayouni-Rad A, Meshkini A, Alikhah H, Houshyar J, Kamalledin Moghadam S, Yaghoubi SM, Motlagh Asghari K, Torbati Ilkhchi M, Naseri Alavi SA. Exploring Innovative Approaches for Managing Spinal Cord Injury: A Comprehensive Review of Promising Probiotics and Postbiotics. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10513-6. [PMID: 40232596 DOI: 10.1007/s12602-025-10513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide annually, presenting significant challenges in functional recovery despite therapeutic advancements. Current treatment strategies predominantly focus on stabilizing the spinal cord and facilitating neural repair, yet their effectiveness remains uncertain and controversial. Recent scientific investigations have explored the potential of probiotics and postbiotics to modulate inflammation, influence neurotransmitters, and aid in tissue repair, marking a potential paradigm shift in SCI management. This review critically evaluates these innovative approaches, emphasizing their ability to harness the natural properties of microorganisms within the body to potentially enhance outcomes in SCI treatment. By analyzing the latest research findings, this review provides valuable insights into how probiotics and postbiotics can revolutionize inflammation management and neurological recovery following SCI, underscoring their promising role in future therapeutic strategies aimed at improving the quality of life of SCI patients globally.
Collapse
Affiliation(s)
- Fereshteh Jamali
- Neurosurgery Department, Children'S Hospital at Montefiore, New York City, USA
| | - Safa Mousavi
- Department of Public Health, College of Health and Human Services, California State University, Fresno, CA, USA
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalil Houshyar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
2
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Abbaszadeh F, Javadpour P, Mousavi Nasab MM, Jorjani M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4293391. [PMID: 38938696 PMCID: PMC11211004 DOI: 10.1155/2024/4293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jorjani
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of PharmacologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhu R, Kang Y, Li Q, Peng K, Shi X, Yin Z, Xuan Y. Alpha-tocopherol inhibits ferroptosis and promotes neural function recovery in rats with spinal cord injury via downregulating Alox15. Biomed Pharmacother 2024; 175:116734. [PMID: 38754264 DOI: 10.1016/j.biopha.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; Department of Orthopedics, Hefei Orthopedics Hospital, 58 Chaohu Northern Road, Hefei 238001, China
| | - Yu Kang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Qiangwei Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Kai Peng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xuanming Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China.
| | - Yong Xuan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; Department of Orthopedics, The Second People's Hospital of Hefei, 246 Heping Road, Hefei 230011, China.
| |
Collapse
|
5
|
Pedroza-García KA, Careaga-Cárdenas G, Díaz-Galindo C, Quintanar JL, Hernández-Jasso I, Ramírez-Orozco RE. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr Neurosci 2023; 26:1120-1137. [PMID: 36537581 DOI: 10.1080/1028415x.2022.2133842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Spinal cord injury (SCI) cause significant disability and impact the quality of life of those affected by it. The nutritional status and diet are fundamental to diminish the progression of complications; vitamins modulate the inflammatory response and oxidative stress, promote blood-spinal cord barrier preservation and the prompt recovery of homeostasis. A deep knowledge of the benefits achieved from vitamins in patients with SCI are summarized. Information of dosage, time, and effects of vitamins in these patients are also displayed. Vitamins have been extensively investigated; however, more clinical trials are needed to clarify the scope of vitamin supplementation.Objective: The objective of this review was to offer relevant therapeutic information based on vitamins supplementation for SCI patients.Methods: Basic and clinical studies that have implemented the use of vitamins in SCI were considered. They were selected from the year 2000-2022 from three databases: PubMed, Science Direct and Google Scholar.Results: Consistent benefits in clinical trials were shown in those who were supplemented with vitamin D (prevents osteoporosis and improves physical performance variables), B3 (improves lipid profile) and B12 (neurological prophylaxis of chronic SCI damage) mainly. On the other hand, improvement related to neuroprotection, damage modulation (vitamin A) and its prophylaxis were associated to B complex vitamins supplementation; the studies who reported positive results are displayed in this review.Discussion: Physicians should become familiar with relevant information that can support conventional treatment in patients with SCI, such as the use of vitamins, a viable option that can improve outcomes in patients with this condition.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Gabriela Careaga-Cárdenas
- Biomedical Research, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Ricardo E Ramírez-Orozco
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
6
|
Ding Y, Jiang X, Li L, Dai Q, Tao L, Liu J, Li Z, Wang J, Liao C, Gao X. Effects of comprehensive functional nursing on functional recovery and quality of life in patients with spinal cord injury. Medicine (Baltimore) 2023; 102:e35102. [PMID: 37747020 PMCID: PMC10519484 DOI: 10.1097/md.0000000000035102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
This study evaluated the effects of comprehensive functional nursing on functional recovery and quality of life in patients with spinal cord injuries (SCIs). A total of 214 patients with SCIs treated in our hospital from October 2019 to October 2021 were included in the retrospective analysis and divided into a general care group (n = 107) and a comprehensive care group (n = 107), based on the care that they received. Patients in the general care group received general functional nursing, whereas those in the comprehensive care group received a comprehensive functional nursing intervention. The Rivermead Mobility Index (RMI), Barthel Index (BI), and Berg Balance Score (BBS) were used to evaluate patient neurobehavioral ability before and after nursing. Changes in cardiopulmonary function indexes, left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), vital capacity (VC), forced expiratory volume in 1 second (FEV1), FEV1/FVC, and maximal voluntary ventilation (MVV) were measured before and after nursing. The number of micturition, maximum micturition volume, bladder volume, residual urine volume, and lower urinary tract symptom (LUTS) score were recorded, and the improvement in bladder function were measured before and after nursing. The Hamilton Anxiety Scale (HAMA) and Beck Depression Inventory (BDI) scores were used to evaluate patients' emotional state. After nursing, the RMI, BI, BBS score, FEV1, FEV1/FVC, MVV, maximum micturition volume, bladder volume, and SF-36 scores of the comprehensive care group were significantly higher than those of the general care group, and the LVEDD, LVESD, micturition time, residual urine volume, and LUTS, HAMA, and BDI scores of the comprehensive care group were significantly lower than those of the general care group. In patients with SCIs, comprehensive functional nursing can promote the recovery of neurocognition, bladder function, and cardiorespiratory function, and improve their quality of life. Comprehensive functional nursing is worthy of clinical application.
Collapse
Affiliation(s)
- Yang Ding
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xixuan Jiang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lunlan Li
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Dai
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Tao
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Liu
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Li
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chenxia Liao
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Gao
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
8
|
Jorge DDMF, Marcon RM, Cristante AF, Filho TEPB, Dos Santos GB. Evaluation of the effect of intrathecal GM1 in 24, 48, and 72 hours after acute spinal cord injury in rats. Clinics (Sao Paulo) 2023; 78:100228. [PMID: 37418797 DOI: 10.1016/j.clinsp.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the best timing and feasibility of intrathecal application of sodium monosialoganglioside (GM1) after spinal cord contusion in Wistar rats as an experimental model. METHODS Forty Wistar rats were submitted to contusion spinal cord injury after laminectomy. The animals were randomized and divided into four groups: Group 1 - Intrathecal application of GM1 24 hours after contusion; Group 2 - Intrathecal application of GM1 48 hours after contusion; Group 3 - intrathecal application of GM1 72 hours after contusion; Group 4 - Sham, with laminectomy and intrathecal application of 0.5 mL of 0.9% saline solution, without contusion. The recovery of locomotor function was evaluated at seven different moments by the Basso, Beattie, and Bresnahan (BBB) test. They were also assessed by the horizontal ladder, with sensory-motor behavioral assessment criteria, pre-and postoperatively. RESULTS This experimental study showed better functional scores in the group submitted to the application of GM1, with statistically significant results, showing a mean increase when evaluated on known motor tests like the horizontal ladder and BBB, at all times of evaluation (p < 0.05), especially in group 2 (48 hours after spinal cord injury). Also, fewer mistakes and slips over the horizontal ladder were observed, and many points were achieved at the BBB scale analysis. CONCLUSION The study demonstrated that the intrathecal application of GM1 after spinal cord contusion in Wistar rats is feasible. The application 48 hours after the injury presented the best functional results.
Collapse
Affiliation(s)
- Daniel de Moraes Ferreira Jorge
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (IOT-HC/FMUSP), São Paulo, SP, Brazil.
| | - Raphael Martus Marcon
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (IOT-HC/FMUSP), São Paulo, SP, Brazil
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (IOT-HC/FMUSP), São Paulo, SP, Brazil
| | - Tarcísio Eloy Pessoa Barros Filho
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (IOT-HC/FMUSP), São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (IOT-HC/FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
10
|
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 2022; 23:195. [PMID: 35831684 DOI: 10.1208/s12249-022-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.
Collapse
Affiliation(s)
- Aayushi Laliwala
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA
| | - Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Alekha K Dash
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA.
| |
Collapse
|
11
|
Effect of Metformin on Locomotor Function Recovery in Rat Spinal Cord Injury Model: A Meta-analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1948003. [PMID: 34938380 PMCID: PMC8687849 DOI: 10.1155/2021/1948003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Background Disorder of locomotor function is universal in patients with spinal cord injury (SCI) and has a severe impairment on their quality of life. Metformin, the first-line antidiabetic drug, has been used to improve locomotor function in SCI rats through antioxidative mechanisms recently. Methods A search strategy was conducted from databases, including PubMed, Web of Science, MEDLINE, and Scopus database until April 2021. The methodological quality of the animal experimental studies was assessed according to the Systematic Review Centre for Laboratory animal Experimentation's Risk of Bias tool. The weighted mean difference was calculated with the random-effects model. Results Seven eligible studies on SCI and metformin were reviewed. The meta-analysis indicated that SCI rats receiving metformin therapy showed a significant locomotor function recovery. Limitations and no obvious publication bias were presented in the studies. Conclusion Metformin can promote the recovery of the locomotor function of SCI rats. However, the use of this meta-analysis was influenced due to the not high quality of studies. Consequently, more high-quality studies are necessary for preclinical studies of SCI in the future.
Collapse
|
12
|
Invernizzi M, de Sire A, Fusco N. Rethinking the clinical management of volumetric muscle loss in patients with spinal cord injury: Synergy among nutritional supplementation, pharmacotherapy, and rehabilitation. Curr Opin Pharmacol 2021; 57:132-139. [PMID: 33721616 DOI: 10.1016/j.coph.2021.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a condition defining the damage of the spinal cord that leads to musculoskeletal sequelae, including volumetric muscle loss (VML) in a significant proportion of patients. VML occurring after SCI is responsible for delayed recovery, with detrimental consequences in terms of functional outcomes and additional alterations of the muscle tissue. The treatment of muscle alterations in these patients usually relies on nutritional supplementation. However, rehabilitation therapy has a well-recognized role in improving muscle mass and function, even in subjects affected by SCI. Furthermore, novel medical therapies have been recently investigated, with positive results. In this scoping review, we portray the state-of-the-art treatment of muscle modifications after SCI, focusing on the multidisciplinary and multidimensional management of these patients.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy; Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy.
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Khachatryan Z, Haunschild J, von Aspern K, Borger MA, Etz CD. Ischemic spinal cord injury - experimental evidence and evolution of protective measures. Ann Thorac Surg 2021; 113:1692-1702. [PMID: 33434541 DOI: 10.1016/j.athoracsur.2020.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 11/01/2022]
Abstract
BACKGROUND Paraplegia remains one of the most devastating complications of descending and thoracoabdominal aortic repair. The aim of this review is to outline the current state of art in the rapidly developing field of spinal cord injury (SCI) research. METHODS A review of PubMed and Web of Science databases was performed using the following terms and their combinations: spinal cord, injury, ischemia, ischemia-reperfusion, ischemic spinal cord injury, paraplegia, paraparesis. Articles published before July 2019 were screened and included if considered relevant. RESULTS The review focuses on the topic of SCI and the developments concerning methods of monitoring, diagnostics and prevention of SCI. CONCLUSIONS Translation of novel technologies from bench to bedside and into everyday clinical practice is challenging, however each of the developing areas hold great promise in SCI prevention.
Collapse
Affiliation(s)
- Zara Khachatryan
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Josephina Haunschild
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Konstantin von Aspern
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Michael A Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Christian D Etz
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany.
| |
Collapse
|
14
|
Hong JY, Davaa G, Yoo H, Hong K, Hyun JK. Ascorbic Acid Promotes Functional Restoration after Spinal Cord Injury Partly by Epigenetic Modulation. Cells 2020; 9:cells9051310. [PMID: 32466098 PMCID: PMC7290865 DOI: 10.3390/cells9051310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Axonal regeneration after spinal cord injury (SCI) is difficult to achieve, and no fundamental treatment can be applied in clinical settings. DNA methylation has been suggested to play a role in regeneration capacity and neuronal growth after SCI by controlling the expression of regeneration-associated genes (RAGs). The aim of this study was to examine changes in neuronal DNA methylation status after SCI and to determine whether modulation of DNA methylation with ascorbic acid can enhance neuronal regeneration or functional restoration after SCI. Changes in epigenetic marks (5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)); the expression of Ten-eleven translocation (Tet) family genes; and the expression of genes related to inflammation, regeneration, and degeneration in the brain motor cortex were determined following SCI. The 5hmC level within the brain was increased after SCI, especially in the acute and subacute stages, and the mRNA levels of Tet gene family members (Tet1, Tet2, and Tet3) were also increased. Administration of ascorbic acid (100 mg/kg) to SCI rats enhanced 5hmC levels; increased the expression of the Tet1, Tet2, and Tet3 genes within the brain motor cortex; promoted axonal sprouting within the lesion cavity of the spinal cord; and enhanced recovery of locomotor function until 12 weeks. In conclusion, we found that epigenetic status in the brain motor cortex is changed after SCI and that epigenetic modulation using ascorbic acid may contribute to functional recovery after SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
- Correspondence: (K.H.); (J.K.H.); Tel.: +82-10-3678-7189 (K.H.); +81-10-2293-3415 (J.K.H.)
| | - Jung Keun Hyun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Wiregene, Co., Ltd., Cheonan 31116, Korea
- Correspondence: (K.H.); (J.K.H.); Tel.: +82-10-3678-7189 (K.H.); +81-10-2293-3415 (J.K.H.)
| |
Collapse
|