1
|
Ohira S, Suzuki Y, Washio H, Yamamoto Y, Tateishi S, Inui S, Kanayama N, Kawamata M, Miyazaki M, Nishio T, Koizumi M, Nakanishi K, Konishi K. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 2024; 200:39-48. [PMID: 37591978 DOI: 10.1007/s00066-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuta Suzuki
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Minoru Kawamata
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
2
|
Hasler SW, Kallehauge JF, Hansen RH, Samsøe E, Arp DT, Nissen HD, Edmund JM, Bernchou U, Mahmood F. Geometric distortions in clinical MRI sequences for radiotherapy: insights gained from a multicenter investigation. Acta Oncol 2023; 62:1551-1560. [PMID: 37815867 DOI: 10.1080/0284186x.2023.2266560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND As magnetic resonance imaging (MRI) becomes increasingly integrated into radiotherapy (RT) for enhanced treatment planning and adaptation, the inherent geometric distortion in acquired MR images pose a potential challenge to treatment accuracy. This study aimed to evaluate the geometric distortion levels in the clinical MRI protocols used across Danish RT centers and discuss influence of specific sequence parameters. Based on the variety in geometric performance across centers, we assess if harmonization of MRI sequences is a relevant measure. MATERIALS AND METHODS Nine centers participated with 12 MRI scanners and MRI-Linacs (MRL). Using a travelling phantom approach, a reference MRI sequence was used to assess variation in baseline distortion level between scanners. The phantom was also scanned with local clinical MRI sequences for brain, head/neck (H/N), abdomen, and pelvis. The influence of echo time, receiver bandwidth, image weighting, and 2D/3D acquisition was investigated. RESULTS We found a large variation in geometric accuracy across 93 clinical sequences examined, exceeding the baseline variation found between MRI scanners (σ = 0.22 mm), except for abdominal sequences where the variation was lower. Brain and abdominal sequences showed lowest distortion levels ([0.22, 2.26] mm), and a large variation in performance was found for H/N and pelvic sequences ([0.19, 4.07] mm). Post hoc analyses revealed that distortion levels decreased with increasing bandwidth and a less clear increase in distortion levels with increasing echo time. 3D MRI sequences had lower distortion levels than 2D (median of 1.10 and 2.10 mm, respectively), and in DWI sequences, the echo-planar imaging read-out resulted in highest distortion levels. CONCLUSION There is a large variation in the geometric distortion levels of clinical MRI sequences across Danish RT centers, and between anatomical sites. The large variation observed makes harmonization of MRI sequences across institutions and adoption of practices from well-performing anatomical sites, a relevant measure within RT.
Collapse
Affiliation(s)
- Signe Winther Hasler
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Folsted Kallehauge
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Hvass Hansen
- Section for Radiation Therapy, Department of Oncology, Center for Cancer and Organ Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Samsøe
- Department of Clinical Oncology, Zealand University Hospital, Naestved, Denmark
| | - Dennis Tideman Arp
- Department of Medical Physics, Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Dahl Nissen
- Department of Medical Physics, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jens M Edmund
- Radiotherapy Research Unit, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Nousiainen K, Mäkelä T, Peltonen JI. Characterizing geometric distortions of 3D sequences in clinical head MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:983-995. [PMID: 35657535 PMCID: PMC9596562 DOI: 10.1007/s10334-022-01020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Objective Phantoms are often used to estimate the geometric accuracy in magnetic resonance imaging (MRI). However, the distortions may differ between anatomical and phantom images. This study aimed to investigate the applicability of a phantom-based and a test-subject-based method in evaluating geometric distortion present in clinical head-imaging sequences. Materials and methods We imaged a 3D-printed phantom and test subjects with two MRI scanners using two clinical head-imaging 3D sequences with varying patient-table positions and receiver bandwidths. The geometric distortions were evaluated through nonrigid registrations: the displaced acquisitions were compared against the ideal isocenter positioning, and the varied bandwidth volumes against the volume with the highest bandwidth. The phantom acquisitions were also registered to a computed tomography scan. Results Geometric distortion magnitudes increased with larger table displacements and were in good agreement between the phantom and test-subject acquisitions. The effect of increased distortions with decreasing receiver bandwidth was more prominent for test-subject acquisitions. Conclusion Presented results emphasize the sensitivity of the geometric accuracy to positioning and imaging parameters. Phantom limitations may become an issue with some sequence types, encouraging the use of anatomical images for evaluating the geometric accuracy.
Collapse
Affiliation(s)
- Katri Nousiainen
- HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Teemu Mäkelä
- HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Juha I Peltonen
- HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|