1
|
5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 2022; 45:3139-3148. [PMID: 35972631 DOI: 10.1007/s10143-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) is used to assist brain tumor resection, especially for high-grade gliomas but also for low-grade gliomas, metastasis, and meningiomas. With the increasing use of this technique, even to assist biopsies, high-grade glioma-mimicking lesions had misled diagnosis by showing 5-ALA fluorescence in non-neoplastic lesions such as radiation necrosis and inflammatory or infectious disease. Since only isolated reports have been published, we systematically review papers reporting non-neoplastic lesion cases with 5-ALA according with the PRISMA guidelines, present our series, and discuss its pathophysiology. In total, 245 articles were identified and 12 were extracted according to our inclusion criteria. Analyzing 27 patients, high-grade glioma was postulated as preoperative diagnosis in 48% of the cases. Microsurgical resection was performed in 19 cases (70%), while 8 patients were submitted to biopsy (30%). We found 4 positive cases in demyelinating disease (50%), 4 in brain abscess (80%), 1 in neurocysticercosis (33%), 1 in neurotoxoplasmosis, infarction, and hematoma (100%), 4 in inflammatory disease (80%), and 3 in cortical dysplasia (100%). New indications are being considered especially in benign lesion biopsies with assistance of 5-ALA. Using fluorescence as an aid in biopsies may improve procedure time, number of samples, and necessity of intraoperative pathology. Further studies should include this technology to encourage more beneficial uses.
Collapse
|
2
|
Schupper AJ, Baron RB, Cheung W, Rodriguez J, Kalkanis SN, Chohan MO, Andersen BJ, Chamoun R, Nahed BV, Zacharia BE, Kennedy J, Moulding HD, Zucker L, Chicoine MR, Olson JJ, Jensen RL, Sherman JH, Zhang X, Price G, Fowkes M, Germano IM, Carter BS, Hadjipanayis CG, Yong RL. 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg 2021:1-10. [PMID: 34624862 DOI: 10.3171/2021.5.jns21310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Greater extent of resection (EOR) is associated with longer overall survival in patients with high-grade gliomas (HGGs). 5-Aminolevulinic acid (5-ALA) can increase EOR by improving intraoperative visualization of contrast-enhancing tumor during fluorescence-guided surgery (FGS). When administered orally, 5-ALA is converted by glioma cells into protoporphyrin IX (PPIX), which fluoresces under blue 400-nm light. 5-ALA has been available for use in Europe since 2010, but only recently gained FDA approval as an intraoperative imaging agent for HGG tissue. In this first-ever, to the authors' knowledge, multicenter 5-ALA FGS study conducted in the United States, the primary objectives were the following: 1) assess the diagnostic accuracy of 5-ALA-induced PPIX fluorescence for HGG histopathology across diverse centers and surgeons; and 2) assess the safety profile of 5-ALA FGS, with particular attention to neurological morbidity. METHODS This single-arm, multicenter, prospective study included adults aged 18-80 years with Karnofsky Performance Status (KPS) score > 60 and an MRI diagnosis of suspected new or recurrent resectable HGG. Intraoperatively, 3-5 samples per tumor were taken and their fluorescence status was recorded by the surgeon. Specimens were submitted for histopathological analysis. Patients were followed for 6 weeks postoperatively for adverse events, changes in the neurological exam, and KPS score. Multivariate analyses were performed of the outcomes of KPS decline, EOR, and residual enhancing tumor volume to identify predictive patient and intraoperative variables. RESULTS Sixty-nine patients underwent 5-ALA FGS, providing 275 tumor samples for analysis. PPIX fluorescence had a sensitivity of 96.5%, specificity of 29.4%, positive predictive value (PPV) for HGG histopathology of 95.4%, and diagnostic accuracy of 92.4%. Drug-related adverse events occurred at a rate of 22%. Serious adverse events due to intraoperative neurological injury, which may have resulted from FGS, occurred at a rate of 4.3%. There were 2 deaths unrelated to FGS. Compared to preoperative KPS scores, postoperative KPS scores were significantly lower at 48 hours and 2 weeks but were not different at 6 weeks postoperatively. Complete resection of enhancing tumor occurred in 51.9% of patients. Smaller preoperative tumor volume and use of intraoperative MRI predicted lower residual tumor volume. CONCLUSIONS PPIX fluorescence, as judged by the surgeon, has a high sensitivity and PPV for HGG. 5-ALA was well tolerated in terms of drug-related adverse events, and its application by trained surgeons in FGS for HGGs was not associated with any excess neurological morbidity.
Collapse
Affiliation(s)
- Alexander J Schupper
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Rebecca B Baron
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - William Cheung
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Jessica Rodriguez
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Steven N Kalkanis
- 2Department of Neurological Surgery, Henry Ford Medical Center, Detroit, Michigan
| | - Muhammad O Chohan
- 3Department of Neurological Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Bruce J Andersen
- 4Department of Neurological Surgery, St. Alphonsus Regional Medical Center, Boise, Idaho
| | - Roukoz Chamoun
- 5Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian V Nahed
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Brad E Zacharia
- 7Department of Neurological Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Hugh D Moulding
- 9Department of Neurological Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - Lloyd Zucker
- 10Department of Neurological Surgery, Delray Medical Center, Delray Beach, Florida
| | - Michael R Chicoine
- 11Department of Neurological Surgery, Barnes-Jewish Hospital, St. Louis, Missouri
| | - Jeffrey J Olson
- 12Department of Neurological Surgery, Emory University Hospital, Atlanta, Georgia
| | - Randy L Jensen
- 13Department of Neurological Surgery, Huntsman Cancer Institute, Salt Lake City, Utah; and
| | - Jonathan H Sherman
- 14Department of Neurological Surgery, George Washington University Hospital, Washington, DC
| | - Xiangnan Zhang
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Gabrielle Price
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Mary Fowkes
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Isabelle M Germano
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Bob S Carter
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Raymund L Yong
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| |
Collapse
|
3
|
Castello MA, Gleeson JG. Insight into developmental mechanisms of global and focal migration disorders of cortical development. Curr Opin Neurobiol 2020; 66:77-84. [PMID: 33099181 DOI: 10.1016/j.conb.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Cortical development involves neurogenesis followed by migration, maturation, and myelination of immature neurons. Disruptions in these processes can cause malformations of cortical development (MCD). Radial glia (RG) are the stem cells of the brain, both generating neurons and providing the scaffold upon which immature neurons radially migrate. Germline mutations in genes required for cell migration, or cell-cell contact, often lead to global MCDs. Somatic mutations in RG in genes involved in homeostatic function, like mTOR signaling, often lead to focal MCDs. Two different mutations occurring in the same patient can combine in ways we are just beginning to understand. Our growing knowledge about MCD suggests mTOR inhibitors may have expanded utility in treatment-resistant epilepsy, while imaging techniques can better delineate the type and extent of these lesions.
Collapse
Affiliation(s)
- Michael A Castello
- Department of Neurosciences, Division of Child Neurology, University of California San Diego, San Diego, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
4
|
A Raman Imaging Approach Using CD47 Antibody-Labeled SERS Nanoparticles for Identifying Breast Cancer and Its Potential to Guide Surgical Resection. NANOMATERIALS 2018; 8:nano8110953. [PMID: 30463284 PMCID: PMC6265869 DOI: 10.3390/nano8110953] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Raman spectroscopic imaging has shown great promise for improved cancer detection and localization with the use of tumor targeting surface enhanced Raman scattering (SERS) nanoparticles. With the ultrasensitive detection and multiplexing capabilities that SERS imaging has to offer, scientists have been investigating several clinical applications that could benefit from this unique imaging strategy. Recently, there has been a push to develop new image-guidance tools for surgical resection to help surgeons sensitively and specifically identify tumor margins in real time. We hypothesized that SERS nanoparticles (NPs) topically applied to breast cancer resection margins have the potential to provide real-time feedback on the presence of residual cancer in the resection margins during lumpectomy. Here, we explore the ability of SERS nanoparticles conjugated with a cluster of differentiation-47 (CD47) antibody to target breast cancer. CD47 is a cell surface receptor that has recently been shown to be overexpressed on several solid tumor types. The binding potential of our CD47-labeled SERS nanoparticles was assessed using fluorescence assisted cell sorting (FACS) on seven different human breast cancer cell lines, some of which were triple negative (negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)). Xenograft mouse models were also used to assess the ability of our Raman imaging system to identify tumor from normal tissue. A ratiometric imaging strategy was used to quantify specific vs. nonspecific probe binding, resulting in improved tumor-to-background ratios. FACS analysis showed that CD47-labeled SERS nanoparticles bound to seven different breast cancer cell lines at levels 12-fold to 70-fold higher than isotype control-labeled nanoparticles (p < 0.01), suggesting that our CD47-targeted nanoparticles actively bind to CD47 on breast cancer cells. In a mouse xenograft model of human breast cancer, topical application of CD47-targeted nanoparticles to excised normal and cancer tissue revealed increased binding of CD47-targeted nanoparticles on tumor relative to normal adjacent tissue. The findings of this study support further investigation and suggest that SERS nanoparticles topically applied to breast cancer could guide more complete surgical resection during lumpectomy.
Collapse
|