1
|
Linke AC, Chen B, Olson L, Cordova M, Wilkinson M, Wang T, Herrera M, Salmina M, Rios A, Mahmalji J, Do T, Vu J, Budman M, Walker A, Fishman I. Altered Development of the Hurst Exponent in the Medial Prefrontal Cortex in Preschoolers With Autism. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00271-4. [PMID: 39293740 DOI: 10.1016/j.bpsc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Atypical balance of excitation (E) and inhibition (I) in the brain is thought to contribute to the emergence and symptomatology of autism spectrum disorder (ASD). E/I ratio can be estimated from resting-state functional magnetic resonance imaging (fMRI) using the Hurst exponent, H. A recent study reported decreased ventromedial prefrontal cortex (vmPFC) H in male adults with ASD. Part of the default mode network (DMN), the vmPFC plays an important role in emotion regulation, decision making, and social cognition. It frequently shows altered function and connectivity in individuals with autism. METHODS The current study presents the first fMRI evidence of altered early development of vmPFC H and its link to DMN functional connectivity and emotional control in toddlers and preschoolers with ASD. A total of 83 children (45 with ASD), ages 1.5-5 years, underwent natural sleep fMRI as part of a longitudinal study. RESULTS In a cross-sectional analysis, vmPFC H decreased with age in children with ASD, reflecting increasing E/I ratio, but not in typically developing children. This effect remained significant when controlling for gestational age at birth, socioeconomic status, or ethnicity. The same pattern was also observed in a subset of children with longitudinal fMRI data acquired 2 years apart on average. Lower vmPFC H was also associated with reduced functional connectivity within the DMN as well as with higher emotional control deficits (although only significant transdiagnostically). CONCLUSIONS These results suggest an early onset of E/I imbalances in the vmPFC in ASD, with likely consequences for the maturation of the DMN.
Collapse
Affiliation(s)
- Annika C Linke
- Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; Center for Autism and Developmental Disorders, San Diego State University, San Diego, California.
| | - Bosi Chen
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York
| | - Lindsay Olson
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Michaela Cordova
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Molly Wilkinson
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Tiffany Wang
- Department of Psychology, University of California San Diego, La Jolla, California
| | - Meagan Herrera
- Department of Psychology, San Diego State University, San Diego, California
| | - Madison Salmina
- Department of Psychology, San Diego State University, San Diego, California
| | - Adriana Rios
- Department of Psychology, San Diego State University, San Diego, California
| | - Judy Mahmalji
- Department of Psychology, San Diego State University, San Diego, California
| | - Tess Do
- Department of Psychology, San Diego State University, San Diego, California
| | - Jessica Vu
- Department of Psychology, San Diego State University, San Diego, California
| | - Michelle Budman
- Department of Psychology, San Diego State University, San Diego, California
| | - Alexis Walker
- Department of Psychology, San Diego State University, San Diego, California
| | - Inna Fishman
- Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; Center for Autism and Developmental Disorders, San Diego State University, San Diego, California
| |
Collapse
|
2
|
Murray SO, Kolodny T, Webb SJ. Linking cortical surface area to computational properties in human visual perception. iScience 2024; 27:110490. [PMID: 39148711 PMCID: PMC11325354 DOI: 10.1016/j.isci.2024.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Cortical structure and function are closely linked, shaping the neural basis of human behavior. This study explores how cortical surface area (SA), a structural feature, influences computational properties in human visual perception. Using a combination of psychophysical, neuroimaging, and computational modeling approaches, we find that variations in SA across the parietal and frontal cortices are linked to distinct behavioral patterns in a motion perception task. These differences in behavior correspond to specific parameters within a divisive normalization model, indicating a unique contribution of SA to the spatial organization of cortical circuitry. This work highlights the importance of cortical architecture in modifying computational processes that underlie perception, enhancing our understanding of how structural differences can influence neural function and behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Tamar Kolodny
- Department of Psychology and the School of Brain Sciences and Cognition, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 1920 Terry Avenue, Building Cure-03, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Phan TX, Baratono S, Drew W, Tetreault AM, Fox MD, Darby RR. Increased Cortical Thickness in Alzheimer's Disease. Ann Neurol 2024; 95:929-940. [PMID: 38400760 PMCID: PMC11060923 DOI: 10.1002/ana.26894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.
Collapse
Affiliation(s)
- Tony X. Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Sheena Baratono
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William Drew
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Aaron M. Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - R. Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Yorita A, Kawayama T, Inoue M, Kinoshita T, Oda H, Tokunaga Y, Tateishi T, Shoji Y, Uchimura N, Abe T, Hoshino T, Taniwaki T. Altered Functional Connectivity during Mild Transient Respiratory Impairment Induced by a Resistive Load. J Clin Med 2024; 13:2556. [PMID: 38731091 PMCID: PMC11084533 DOI: 10.3390/jcm13092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Previous neuroimaging studies have identified brain regions related to respiratory motor control and perception. However, little is known about the resting-state functional connectivity (FC) associated with respiratory impairment. We aimed to determine the FC involved in mild respiratory impairment without altering transcutaneous oxygen saturation. Methods: We obtained resting-state functional magnetic resonance imaging data from 36 healthy volunteers during normal respiration and mild respiratory impairment induced by resistive load (effort breathing). ROI-to-ROI and seed-to-voxel analyses were performed using Statistical Parametric Mapping 12 and the CONN toolbox. Results: Compared to normal respiration, effort breathing activated FCs within and between the sensory perceptual area (postcentral gyrus, anterior insular cortex (AInsula), and anterior cingulate cortex) and visual cortex (the visual occipital, occipital pole (OP), and occipital fusiform gyrus). Graph theoretical analysis showed strong centrality in the visual cortex. A significant positive correlation was observed between the dyspnoea score (modified Borg scale) and FC between the left AInsula and right OP. Conclusions: These results suggested that the FCs within the respiratory sensory area via the network hub may be neural mechanisms underlying effort breathing and modified Borg scale scores. These findings may provide new insights into the visual networks that contribute to mild respiratory impairments.
Collapse
Affiliation(s)
- Akiko Yorita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Masayuki Inoue
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Hanako Oda
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Tokunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Shoji
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Naohisa Uchimura
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takayuki Taniwaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| |
Collapse
|
5
|
Haiduk F, Zatorre RJ, Benjamin L, Morillon B, Albouy P. Spectrotemporal cues and attention jointly modulate fMRI network topology for sentence and melody perception. Sci Rep 2024; 14:5501. [PMID: 38448636 PMCID: PMC10917817 DOI: 10.1038/s41598-024-56139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Speech and music are two fundamental modes of human communication. Lateralisation of key processes underlying their perception has been related both to the distinct sensitivity to low-level spectrotemporal acoustic features and to top-down attention. However, the interplay between bottom-up and top-down processes needs to be clarified. In the present study, we investigated the contribution of acoustics and attention to melodies or sentences to lateralisation in fMRI functional network topology. We used sung speech stimuli selectively filtered in temporal or spectral modulation domains with crossed and balanced verbal and melodic content. Perception of speech decreased with degradation of temporal information, whereas perception of melodies decreased with spectral degradation. Applying graph theoretical metrics on fMRI connectivity matrices, we found that local clustering, reflecting functional specialisation, linearly increased when spectral or temporal cues crucial for the task goal were incrementally degraded. These effects occurred in a bilateral fronto-temporo-parietal network for processing temporally degraded sentences and in right auditory regions for processing spectrally degraded melodies. In contrast, global topology remained stable across conditions. These findings suggest that lateralisation for speech and music partially depends on an interplay of acoustic cues and task goals under increased attentional demands.
Collapse
Affiliation(s)
- Felix Haiduk
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.
- Department of General Psychology, University of Padua, Padua, Italy.
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - CRBLM, Montreal, QC, Canada
| | - Lucas Benjamin
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Benjamin Morillon
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - CRBLM, Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Laval University, Quebec, QC, Canada
| |
Collapse
|
6
|
Shah K, Bhartia V, Biswas C, Sahu A, Shetty PM, Singh V, Velayutham P, Awate SP, Moiyadi AV. Tumor location and neurocognitive function-Unravelling the association and identifying relevant anatomical substrates in intra-axial brain tumors. Neurooncol Adv 2024; 6:vdae020. [PMID: 38464948 PMCID: PMC10924535 DOI: 10.1093/noajnl/vdae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Background Neurocognitive function is a key outcome indicator of therapy in brain tumors. Understanding the underlying anatomical substrates involved in domain function and the pathophysiological basis of dysfunction can help ameliorate the effects of therapy and tailor directed rehabilitative strategies. Methods Hundred adult diffuse gliomas were co-registered onto a common demographic-specific brain template to create tumor localization maps. Voxel-based lesion symptom (VLSM) technique was used to assign an association between individual voxels and neuropsychological dysfunction in various domains (attention and executive function (A & EF), language, memory, visuospatial/constructive abilities, and visuomotor speed). The probability maps thus generated were further co-registered to cortical and subcortical atlases. A permutation-based statistical testing method was used to evaluate the statistically and clinically significant anatomical parcels associated with domain dysfunction and to create heat maps. Results Neurocognition was affected in a high proportion of subjects (93%), with A & EF and memory being the most affected domains. Left-sided networks were implicated in patients with A & EF, memory, and language deficits with the perisylvian white matter tracts being the most common across domains. Visuospatial dysfunction was associated with lesions involving the right perisylvian cortical regions, whereas deficits in visuomotor speed were associated with lesions involving primary visual and motor output pathways. Conclusions Significant baseline neurocognitive deficits are prevalent in gliomas. These are multidomain and the perisylvian network especially on the left side seems to be very important, being implicated in dysfunction of many domains.
Collapse
Affiliation(s)
- Kanchi Shah
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vinayak Bhartia
- Computer Science and Engineering Department, Indian Institute of Technology (IIT) Bombay. Mumbai, Maharashtra, India
| | - Chandrima Biswas
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Arpita Sahu
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Radiodiagnosis, Tata Memorial Center, Mumbai, Maharashtra, India
| | - Prakash M Shetty
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vikas Singh
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Parthiban Velayutham
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suyash P Awate
- Computer Science and Engineering Department, Indian Institute of Technology (IIT) Bombay. Mumbai, Maharashtra, India
| | - Aliasgar V Moiyadi
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Center, Mumbai, Maharashtra, India
- Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Hamdi H, Aref HM. Surgery for Obsessive-Compulsive Disorder and Transient Tremors as Newly Reported Side Effect: First Psychiatric Neurosurgery in Egypt. Case Rep Neurol 2024; 16:99-106. [PMID: 38751650 PMCID: PMC11095626 DOI: 10.1159/000538331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The use of surgery for treatment of psychiatric conditions is a well-established strategy, especially in severe and resistant obsessive-compulsive disorder. Attractive anatomical and functional targets for stereotactic surgery are reported in some studies. Surgery for treatment of psychiatric conditions in our nation and Arab world is obscured and hidden because of several social and cultural limitations, which should be overcome. We report here the first psychiatric neurosurgery in our nation and how we overcome such community limitation. This the first report of postoperative tremor. Case Presentation Young patient presented with severe and persistent obsessive-compulsive disorder resistant to all non-surgical modalities for several years. Stereotactic ablation surgery was done under local anaesthesia. Marked improvement in our obsessive-compulsive disorder patient after psychiatric neurosurgery with self-limited tremor was not reported before in the literature. The medications were the same before and immediate after surgery and this is not a drug-induced tremor. Postoperative YBOCS showed 90% of improvement. Conclusion Surgery-induced tremor could be a self-limited side effect after surgery in obsessive-compulsive disorder. Safety and efficacy should be promoted in our nation and Arab world. Society and cultural limitations should be overcome by further research studies, intervention, and activism in the field of mental health systems in our nation and Arab countries to improve awareness.
Collapse
Affiliation(s)
- Hussein Hamdi
- Neurosurgery Department, Tanta University, Tanta, Egypt
| | | |
Collapse
|
8
|
Dadario NB, Sughrue ME, Doyen S. The Brain Connectome for Clinical Neuroscience. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:337-350. [PMID: 39523275 DOI: 10.1007/978-3-031-64892-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this chapter, we introduce the topic of the brain connectome, consisting of the complete set of both the structural and functional connections of the brain. Connectomic information and the large-scale network architecture of the brain provide an improved understanding of the organization and functional relevance of human cortical and subcortical anatomy. We discuss various analytical methods to both identify and interpret structural and functional connectivity data. In turn, we discuss how these data provide significant clinical promise for neurosurgery, neurology, and psychiatry in that more informed decisions can be made based on connectomic information. These data can provide safer and more informed network-based neurosurgery for brain tumor patients and even offer the possibility to modulate the brain connectome.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
9
|
Suero Molina E, Tait MJ, Di Ieva A. Connectomics as a prognostic tool of functional outcome in glioma surgery of the supplementary motor area: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23286. [PMID: 37581598 PMCID: PMC10555591 DOI: 10.3171/case23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The supplementary motor area (SMA) is essential in facilitating the commencement and coordination of complex self-initiated movements. Its complex functional connectivity poses a great risk for postoperative neurological deterioration. SMA syndrome can occur after tumor resection and comprises hemiakinesia and akinetic mutism (often, but unpredictably temporary). Although awake surgery is preferred for mapping and monitoring eloquent areas, connectomics is emerging as a novel technique to tailor neurosurgical approaches and predict functional prognosis, as illustrated in this case. OBSERVATIONS The authors report on a patient presenting with recurrent oligodendroglioma after subtotal resection 7 years earlier. After extensive neuropsychological and neuroradiological assessment (including connectomics), awake surgery was indicated. No intraoperative deficits were recorded; however, the patient presented with postoperative right-sided akinesia and mutism. Postoperative neuroimaging demonstrated the connectome overlapping the preoperative one, and indeed, neurological symptoms resolved after 3 days. LESSONS Comparison of the pre- and postoperative connectome can be used to objectively evaluate surgical outcomes and assess patient prognosis. To the best of the authors' knowledge, this is the first case demonstrating the feasibility of quantitative functional connectivity analysis as a prognostic tool for neurological improvement after surgery. A better understanding of brain networks is instrumental for improving diagnosis, prognosis, and treatment of neuro-oncological patients.
Collapse
Affiliation(s)
- Eric Suero Molina
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
- Macquarie Neurosurgery, Macquarie University Hospital, Sydney, Australia
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany; and
| | - Matthew J. Tait
- Macquarie Neurosurgery, Macquarie University Hospital, Sydney, Australia
- Department of Neurosurgery, Nepean Public Hospital, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
- Macquarie Neurosurgery, Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
10
|
Dadario NB, Tanglay O, Sughrue ME. Deconvoluting human Brodmann area 8 based on its unique structural and functional connectivity. Front Neuroanat 2023; 17:1127143. [PMID: 37426900 PMCID: PMC10323427 DOI: 10.3389/fnana.2023.1127143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Brodmann area 8 (BA8) is traditionally defined as the prefrontal region of the human cerebrum just anterior to the premotor cortices and enveloping most of the superior frontal gyrus. Early studies have suggested the frontal eye fields are situated at its most caudal aspect, causing many to consider BA8 as primarily an ocular center which controls contralateral gaze and attention. However, years of refinement in cytoarchitectural studies have challenged this traditional anatomical definition, providing a refined definition of its boundaries with neighboring cortical areas and the presence of meaningful subdivisions. Furthermore, functional imaging studies have suggested its involvement in a diverse number of higher-order functions, such as motor, cognition, and language. Thus, our traditional working definition of BA8 has likely been insufficient to truly understand the complex structural and functional significance of this area. Recently, large-scale multi-modal neuroimaging approaches have allowed for improved mapping of the neural connectivity of the human brain. Insight into the structural and functional connectivity of the brain connectome, comprised of large-scale brain networks, has allowed for greater understanding of complex neurological functioning and pathophysiological diseases states. Simultaneously, the structural and functional connectivity of BA8 has recently been highlighted in various neuroimaging studies and detailed anatomic dissections. However, while Brodmann's nomenclature is still widely used today, such as for clinical discussions and the communication of research findings, the importance of the underlying connectivity of BA8 requires further review.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Murray SO, Kolodny T, Webb SJ. Cortical Surface Area Relates to Distinct Computational Properties in Human Visual Perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545373. [PMID: 37398212 PMCID: PMC10312808 DOI: 10.1101/2023.06.16.545373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the relationship between cortical structure and function is essential for elucidating the neural basis of human behavior. However, the impact of cortical structural features on the computational properties of neural circuits remains poorly understood. In this study, we demonstrate that a simple structural feature - cortical surface area (SA) - relates to specific computational properties underlying human visual perception. By combining psychophysical, neuroimaging, and computational modeling approaches, we show that differences in SA in the parietal and frontal cortices are associated with distinct patterns of behavior in a motion perception task. These behavioral differences can be accounted for by specific parameters of a divisive normalization model, suggesting that SA in these regions contributes uniquely to the spatial organization of cortical circuitry. Our findings provide novel evidence linking cortical structure to distinct computational properties and offer a framework for understanding how cortical architecture can impact human behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle WA USA 98195
- Seattle Children’s Research Institute, 1920 Terry Ave, Building Cure-03, Seattle WA 98101
| |
Collapse
|
12
|
Lewis M, Santini T, Theis N, Muldoon B, Dash K, Rubin J, Keshavan M, Prasad K. Modular architecture and resilience of structural covariance networks in first-episode antipsychotic-naive psychoses. Sci Rep 2023; 13:7751. [PMID: 37173346 PMCID: PMC10181992 DOI: 10.1038/s41598-023-34210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Structural covariance network (SCN) studies on first-episode antipsychotic-naïve psychosis (FEAP) have examined less granular parcellations on one morphometric feature reporting lower network resilience among other findings. We examined SCNs of volume, cortical thickness, and surface area using the Human Connectome Project atlas-based parcellation (n = 358 regions) from 79 FEAP and 68 controls to comprehensively characterize the networks using a descriptive and perturbational network neuroscience approach. Using graph theoretical methods, we examined network integration, segregation, centrality, community structure, and hub distribution across the small-worldness threshold range and correlated them with psychopathology severity. We used simulated nodal "attacks" (removal of nodes and all their edges) to investigate network resilience, calculated DeltaCon similarity scores, and contrasted the removed nodes to characterize the impact of simulated attacks. Compared to controls, FEAP SCN showed higher betweenness centrality (BC) and lower degree in all three morphometric features and disintegrated with fewer attacks with no change in global efficiency. SCNs showed higher similarity score at the first point of disintegration with ≈ 54% top-ranked BC nodes attacked. FEAP communities consisted of fewer prefrontal, auditory and visual regions. Lower BC, and higher clustering and degree, were associated with greater positive and negative symptom severity. Negative symptoms required twice the changes in these metrics. Globally sparse but locally dense network with more nodes of higher centrality in FEAP could result in higher communication cost compared to controls. FEAP network disintegration with fewer attacks suggests lower resilience without impacting efficiency. Greater network disarray underlying negative symptom severity possibly explains the therapeutic challenge.
Collapse
Affiliation(s)
- Madison Lewis
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Tales Santini
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Katherine Dash
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Konasale Prasad
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Veterans Affairs Pittsburgh Health System, University Drive, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
13
|
Dadario NB, Tanglay O, Stafford JF, Davis EJ, Young IM, Fonseka RD, Briggs RG, Yeung JT, Teo C, Sughrue ME. Topology of the lateral visual system: The fundus of the superior temporal sulcus and parietal area H connect nonvisual cerebrum to the lateral occipital lobe. Brain Behav 2023; 13:e2945. [PMID: 36912573 PMCID: PMC10097165 DOI: 10.1002/brb3.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Mapping the topology of the visual system is critical for understanding how complex cognitive processes like reading can occur. We aim to describe the connectivity of the visual system to understand how the cerebrum accesses visual information in the lateral occipital lobe. METHODS Using meta-analytic software focused on task-based functional MRI studies, an activation likelihood estimation (ALE) of the visual network was created. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE to identify the hub-like regions of the visual network. Diffusion Spectrum Imaging-based fiber tractography was performed to determine the structural connectivity of these regions with extraoccipital cortices. RESULTS The fundus of the superior temporal sulcus (FST) and parietal area H (PH) were identified as hub-like regions for the visual network. FST and PH demonstrated several areas of coactivation beyond the occipital lobe and visual network. Furthermore, these parcellations were highly interconnected with other cortical regions throughout extraoccipital cortices related to their nonvisual functional roles. A cortical model demonstrating connections to these hub-like areas was created. CONCLUSIONS FST and PH are two hub-like areas that demonstrate extensive functional coactivation and structural connections to nonvisual cerebrum. Their structural interconnectedness with language cortices along with the abnormal activation of areas commonly located in the temporo-occipital region in dyslexic individuals suggests possible important roles of FST and PH in the integration of information related to language and reading. Future studies should refine our model by examining the functional roles of these hub areas and their clinical significance.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Charles Teo
- Cingulum Health, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, New South Wales, Australia.,Cingulum Health, Sydney, New South Wales, Australia.,Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Young IM, Dadario NB, Tanglay O, Chen E, Cook B, Taylor HM, Crawford L, Yeung JT, Nicholas PJ, Doyen S, Sughrue ME. Connectivity Model of the Anatomic Substrates and Network Abnormalities in Major Depressive Disorder: A Coordinate Meta-Analysis of Resting-State Functional Connectivity. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
15
|
Surface-Based Cortical Measures in Multimodal Association Brain Regions Predict Chess Expertise. Brain Sci 2022; 12:brainsci12111592. [PMID: 36421916 PMCID: PMC9688322 DOI: 10.3390/brainsci12111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The complex structure of the brain supports high-order cognition, which is crucial for mastering chess. Surface-based measures, including the fractional dimension (FD) and gyrification index (GI), may be more sensitive in detecting cortical changes relative to volumetric indexes. For this reason, structural magnetic resonance imaging data from 29 chess experts and 29 novice participants were analyzed using the CAT12 toolbox. FD and GI for each brain region were compared between the groups. A multivariate model was used to identify surface-based brain measures that can predict chess expertise. In chess experts, FD is increased in the left frontal operculum (p < 0.01), and this change correlates with the starting age of chess practice (ρ = −0.54, p < 0.01). FD is decreased in the right superior parietal lobule (p < 0.01). Chess expertise is predicted by the FD in a network of fronto-parieto-temporal regions and is associated with GI changes in the middle cingulate gyrus (p < 0.01) and the superior temporal sulcus (p < 0.01). Our findings add to the evidence that chess expertise is based on the complex properties of the brain surface of a network of transmodal association areas important for flexible high-level cognitive functions. Interestingly, these changes are associated with long-lasting practice, suggesting that neuroplastic effects develop over time.
Collapse
|
16
|
Briggs RG, Young IM, Dadario NB, Fonseka RD, Hormovas J, Allan P, Larsen ML, Lin YH, Tanglay O, Maxwell BD, Conner AK, Stafford JF, Glenn CA, Teo C, Sughrue ME. Parcellation-based tractographic modeling of the salience network through meta-analysis. Brain Behav 2022; 12:e2646. [PMID: 35733239 PMCID: PMC9304834 DOI: 10.1002/brb3.2646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The salience network (SN) is a transitory mediator between active and passive states of mind. Multiple cortical areas, including the opercular, insular, and cingulate cortices have been linked in this processing, though knowledge of network connectivity has been devoid of structural specificity. OBJECTIVE The current study sought to create an anatomically specific connectivity model of the neural substrates involved in the salience network. METHODS A literature search of PubMed and BrainMap Sleuth was conducted for resting-state and task-based fMRI studies relevant to the salience network according to PRISMA guidelines. Publicly available meta-analytic software was utilized to extract relevant fMRI data for the creation of an activation likelihood estimation (ALE) map and relevant parcellations from the human connectome project overlapping with the ALE data were identified for inclusion in our SN model. DSI-based fiber tractography was then performed on publicaly available data from healthy subjects to determine the structural connections between cortical parcellations comprising the network. RESULTS Nine cortical regions were found to comprise the salience network: areas AVI (anterior ventral insula), MI (middle insula), FOP4 (frontal operculum 4), FOP5 (frontal operculum 5), a24pr (anterior 24 prime), a32pr (anterior 32 prime), p32pr (posterior 32 prime), and SCEF (supplementary and cingulate eye field), and 46. The frontal aslant tract was found to connect the opercular-insular cluster to the middle cingulate clusters of the network, while mostly short U-fibers connected adjacent nodes of the network. CONCLUSION Here we provide an anatomically specific connectivity model of the neural substrates involved in the salience network. These results may serve as an empiric basis for clinical translation in this region and for future study which seeks to expand our understanding of how specific neural substrates are involved in salience processing and guide subsequent human behavior.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Parker Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micah L Larsen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.,Omniscient Neurotechnology, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
O'Neal CM, Ahsan SA, Dadario NB, Fonseka RD, Young IM, Parker A, Maxwell BD, Yeung JT, Briggs RG, Teo C, Sughrue ME. A connectivity model of the anatomic substrates underlying ideomotor apraxia: A meta-analysis of functional neuroimaging studies. Clin Neurol Neurosurg 2021; 207:106765. [PMID: 34237682 DOI: 10.1016/j.clineuro.2021.106765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with ideomotor apraxia (IMA) present with selective impairments in higher-order motor cognition and execution without damage to any motor or sensory pathways. Although extensive research has been conducted to determine the regions of interest (ROIs) underlying these unique impairments, previous models are heterogeneous and may be further clarified based on their structural connectivity, which has been far less described. OBJECTIVE The goal of this research is to propose an anatomically concise network model for the neurophysiologic basis of IMA, specific to the voluntary pantomime, imitation and tool execution, based on intrinsic white matter connectivity. METHODS We utilized meta-analytic software to identify relevant ROIs in ideomotor apraxia as reported in the literature based on functional neuroimaging data with healthy participants. After generating an activation likelihood estimation (ALE) of relevant ROIs, cortical parcellations overlapping the ALE were used to construct an anatomically precise model of anatomic substrates using the parcellation scheme outlined by the Human Connectome Project (HCP). Deterministic tractography was then performed on 25 randomly selected, healthy HCP subjects to determine the structural connectivity underlying the identified ROIs. RESULTS 10 task-based fMRI studies met our inclusion criteria and the ALE analysis demonstrated 6 ROIs to constitute the IMA network: SCEF, FOP4, MIP, AIP, 7AL, and 7PC. These parcellations represent a fronto-parietal network consisting mainly of intra-parietal, U-shaped association fibers (40%) and long-range inferior fronto-occipital fascicle (IFOF) fibers (50%). These findings support previous functional models based on dual-stream motor processing. CONCLUSION We constructed a preliminary model demonstrating the underlying structural interconnectedness of anatomic substrates involved in higher-order motor functioning which is seen impaired in IMA. Our model provides support for previous dual-stream processing frameworks discussed in the literature, but further clarification is necessary with voxel-based lesion studies of IMA to further refine these findings.
Collapse
Affiliation(s)
- Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - Syed A Ahsan
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | - Allan Parker
- Department of Neurosurgery, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - Jacky T Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
18
|
Poologaindran A, Lowe SR, Sughrue ME. The cortical organization of language: distilling human connectome insights for supratentorial neurosurgery. J Neurosurg 2021; 134:1959-1966. [PMID: 32736348 DOI: 10.3171/2020.5.jns191281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/06/2020] [Indexed: 11/06/2022]
Abstract
Connectomics is the production and study of detailed "connection" maps within the nervous system. With unprecedented advances in imaging and high-performance computing, the construction of individualized connectomes for routine neurosurgical use is on the horizon. Multiple projects, including the Human Connectome Project (HCP), have unraveled new and exciting data describing the functional and structural connectivity of the brain. However, the abstraction from much of these data to clinical relevance remains elusive. In the context of preserving neurological function after supratentorial surgery, abstracting surgically salient points from the vast computational data in connectomics is of paramount importance. Herein, the authors discuss four interesting observations from the HCP data that have surgical relevance, with an emphasis on the cortical organization of language: 1) the existence of a motor speech area outside of Broca's area, 2) the eloquence of the frontal aslant tract, 3) the explanation of the medial frontal cognitive control networks, and 4) the establishment of the second ventral stream of language processing. From these connectome observations, the authors discuss the anatomical basis of their insights as well as relevant clinical applications. Together, these observations provide a firm platform for neurosurgeons to advance their knowledge of the cortical networks involved in language and to ultimately improve surgical outcomes. It is hoped that this report encourages neurosurgeons to explore new vistas in connectome-based neurosurgery.
Collapse
Affiliation(s)
- Anujan Poologaindran
- 1Brain Mapping Unit, Department of Psychiatry, University of Cambridge
- 2The Alan Turing Institute, London, United Kingdom
| | - Stephen R Lowe
- 3Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina; and
| | - Michael E Sughrue
- 1Brain Mapping Unit, Department of Psychiatry, University of Cambridge
- 4Department of Neurosurgery, Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
19
|
Briggs RG, Allan PG, Poologaindran A, Dadario NB, Young IM, Ahsan SA, Teo C, Sughrue ME. The Frontal Aslant Tract and Supplementary Motor Area Syndrome: Moving towards a Connectomic Initiation Axis. Cancers (Basel) 2021; 13:cancers13051116. [PMID: 33807749 PMCID: PMC7961364 DOI: 10.3390/cancers13051116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Connectomics enables us to map whole brain networks that can be applied to operative neurosurgery to improve neuro-oncological outcomes. Damage to the superior frontal gyrus during frontal lobe surgery is thought to induce supplementary motor area (SMA) syndrome in patients. However, network-based modeling may provide a more accurate cortical model of SMA syndrome, including the Frontal Aslant Tract (FAT). The aim of our study was to retrospectively assess if surgical tractography with diffusion tensor imaging (DTI) decreases the likelihood of SMA syndrome. Compared to patients who underwent surgery preserving the SFG (n = 23), patients who had their FAT and SMA networks mapped through DTI and subsequently preserved were less likely to experience transient SMA syndrome. Preserving the FAT and SMA improves functional outcomes in patients following medial frontal glioma surgery and demonstrates how network-based approaches can improve surgical outcomes. Abstract Connectomics is the use of big data to map the brain’s neural infrastructure; employing such technology to improve surgical planning may improve neuro-oncological outcomes. Supplementary motor area (SMA) syndrome is a well-known complication of medial frontal lobe surgery. The ‘localizationist’ view posits that damage to the posteromedial bank of the superior frontal gyrus (SFG) is the basis of SMA syndrome. However, surgical experience within the frontal lobe suggests that this is not entirely true. In a study on n = 45 patients undergoing frontal lobe glioma surgery, we sought to determine if a ‘connectomic’ or network-based approach can decrease the likelihood of SMA syndrome. The control group (n = 23) underwent surgery avoiding the posterior bank of the SFG while the treatment group (n = 22) underwent mapping of the SMA network and Frontal Aslant Tract (FAT) using network analysis and DTI tractography. Patient outcomes were assessed post operatively and in subsequent follow-ups. Fewer patients (8.3%) in the treatment group experienced transient SMA syndrome compared to the control group (47%) (p = 0.003). There was no statistically significant difference found between the occurrence of permanent SMA syndrome between control and treatment groups. We demonstrate how utilizing tractography and a network-based approach decreases the likelihood of transient SMA syndrome during medial frontal glioma surgery. We found that not transecting the FAT and the SMA system improved outcomes which may be important for functional outcomes and patient quality of life.
Collapse
Affiliation(s)
- Robert G. Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Parker G. Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK;
- Doctoral Program, The Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Nicholas B. Dadario
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Isabella M. Young
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Syed A. Ahsan
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Charles Teo
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Michael E. Sughrue
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Correspondence:
| |
Collapse
|
20
|
Rollins CPE, Garrison JR, Arribas M, Seyedsalehi A, Li Z, Chan RCK, Yang J, Wang D, Liò P, Yan C, Yi ZH, Cachia A, Upthegrove R, Deakin B, Simons JS, Murray GK, Suckling J. Evidence in cortical folding patterns for prenatal predispositions to hallucinations in schizophrenia. Transl Psychiatry 2020; 10:387. [PMID: 33159044 PMCID: PMC7648757 DOI: 10.1038/s41398-020-01075-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022] Open
Abstract
All perception is a construction of the brain from sensory input. Our first perceptions begin during gestation, making fetal brain development fundamental to how we experience a diverse world. Hallucinations are percepts without origin in physical reality that occur in health and disease. Despite longstanding research on the brain structures supporting hallucinations and on perinatal contributions to the pathophysiology of schizophrenia, what links these two distinct lines of research remains unclear. Sulcal patterns derived from structural magnetic resonance (MR) images can provide a proxy in adulthood for early brain development. We studied two independent datasets of patients with schizophrenia who underwent clinical assessment and 3T MR imaging from the United Kingdom and Shanghai, China (n = 181 combined) and 63 healthy controls from Shanghai. Participants were stratified into those with (n = 79 UK; n = 22 Shanghai) and without (n = 43 UK; n = 37 Shanghai) hallucinations from the PANSS P3 scores for hallucinatory behaviour. We quantified the length, depth, and asymmetry indices of the paracingulate and superior temporal sulci (PCS, STS), which have previously been associated with hallucinations in schizophrenia, and constructed cortical folding covariance matrices organized by large-scale functional networks. In both ethnic groups, we demonstrated a significantly shorter left PCS in patients with hallucinations compared to those without, and to healthy controls. Reduced PCS length and STS depth corresponded to focal deviations in their geometry and to significantly increased covariance within and between areas of the salience and auditory networks. The discovery of neurodevelopmental alterations contributing to hallucinations establishes testable models for these enigmatic, sometimes highly distressing, perceptions and provides mechanistic insight into the pathological consequences of prenatal origins.
Collapse
Affiliation(s)
- Colleen P. E. Rollins
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jane R. Garrison
- grid.5335.00000000121885934Department of Psychology, University of Cambridge, Cambridge, UK
| | - Maite Arribas
- grid.5335.00000000121885934Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK ,grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Aida Seyedsalehi
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK ,grid.450563.10000 0004 0412 9303Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Zhi Li
- grid.9227.e0000000119573309Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Raymond C. K. Chan
- grid.9227.e0000000119573309Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Junwei Yang
- grid.5335.00000000121885934Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Duo Wang
- grid.5335.00000000121885934Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Pietro Liò
- grid.5335.00000000121885934Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Chao Yan
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zheng-hui Yi
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, F-75005 Paris, France ,Université de Paris, IPNP, INSERM, F-75005 Paris, France
| | - Rachel Upthegrove
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Bill Deakin
- grid.5379.80000000121662407Neuroscience and Psychiatry Unit, The University of Manchester, Manchester, UK
| | - Jon S. Simons
- grid.5335.00000000121885934Department of Psychology, University of Cambridge, Cambridge, UK
| | - Graham K. Murray
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.450563.10000 0004 0412 9303Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - John Suckling
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Inuggi A, Pichiecchio A, Ciacchini B, Signorini S, Morelli F, Gori M. Multisystemic Increment of Cortical Thickness in Congenital Blind Children. Cereb Cortex Commun 2020; 1:tgaa071. [PMID: 34296131 PMCID: PMC8152892 DOI: 10.1093/texcom/tgaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
It has been shown that the total or partial lack of visual experience is associated with a plastic reorganization at the brain level, more prominent in congenital blind. Cortical thickness (CT) studies, to date involving only adult subjects, showed that only congenital blind have a thicker cortex than age-matched sighted population while late blind do not. This was explained as a deviation from the physiological mechanism of initial neural growth followed by a pruning mechanism that, in congenital blind children, might be reduced by their visual deprivation, thus determining a thicker cortex. Since those studies involved only adults, it is unknown when these changes may appear and whether they are related to impairment degree. To address this question, we compared the CT among 28 children, from 2 to 12 years, with congenital visual impairments of different degree and an age-matched sighted population. Vertex-wise analysis showed that blind children, but not low vision one, had a thicker cortical surface in few clusters located in occipital, superior parietal, anterior-cingular, orbito-frontal, and mesial precentral regions. Our data suggest that the effect of visual impairment on determining thicker cortex is an early phenomenon, is multisystemic, and occurs only when blindness is almost complete.
Collapse
Affiliation(s)
- Alberto Inuggi
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioural Neuroscience, University of Pavia, 27100 Pavia, Italy
| | | | - Sabrina Signorini
- Centre of Child Neuro-Ophthalmology, Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Federica Morelli
- Department of Brain and Behavioural Neuroscience, University of Pavia, 27100 Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, 16152 Genova, Italy
| |
Collapse
|
22
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
23
|
Jones RG, Briggs RG, Conner AK, Bonney PA, Fletcher LR, Ahsan SA, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME. Measuring graphical strength within the connectome: A neuroanatomic, parcellation-based study. J Neurol Sci 2020; 408:116529. [DOI: 10.1016/j.jns.2019.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
|
24
|
Ahsan SA, Chendeb K, Briggs RG, Fletcher LR, Jones RG, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME. Beyond eloquence and onto centrality: a new paradigm in planning supratentorial neurosurgery. J Neurooncol 2020; 146:229-238. [PMID: 31894519 DOI: 10.1007/s11060-019-03327-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/31/2019] [Indexed: 01/20/2023]
Abstract
PURPOSE Minimizing post-operational neurological deficits as a result of brain surgery has been one of the most pertinent endeavours of neurosurgical research. Studies have utilised fMRIs, EEGs and MEGs in order to delineate and establish eloquent areas, however, these methods have not been utilized by the wider neurosurgical community due to a lack of clinical endpoints. We sought to ascertain if there is a correlation between graph theory metrics and the neurosurgical notion of eloquent brain regions. We also wanted to establish which graph theory based nodal centrality measure performs the best in predicting eloquent areas. METHODS We obtained diffusion neuroimaging data from the Human Connectome Project (HCP) and applied a parcellation scheme to it. This enabled us to construct a weighted adjacency matrix which we then analysed. Our analysis looked at the correlation between PageRank centrality and eloquent areas. We then compared PageRank centrality to eigenvector centrality and degree centrality to see what the best measure of empirical neurosurgical eloquence was. RESULTS Areas that are considered neurosurgically eloquent tended to be predicted by high PageRank centrality. By using summary scores for the three nodal centrality measures we found that PageRank centrality best correlated to empirical neurosurgical eloquence. CONCLUSION The notion of eloquent areas is important to neurosurgery and graph theory provides a mathematical framework to predict these areas. PageRank centrality is able to consistently find areas that we consider eloquent. It is able to do so better than eigenvector and degree central measures.
Collapse
Affiliation(s)
- Syed Ali Ahsan
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 3, Level 7, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Kassem Chendeb
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 3, Level 7, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Luke R Fletcher
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Ryan G Jones
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Cameron E Nix
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Christina C Jacobs
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Alison M Lack
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Daniel T Griffin
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Charles Teo
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 3, Level 7, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Michael Edward Sughrue
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 3, Level 7, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|