1
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025; 33:508-527. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|
3
|
Russo B, D'Addato G, Salvatore G, Menduni M, Frontoni S, Carbone L, Camaioni A, Klinger FG, De Felici M, Picconi F, La Sala G. Gliotic Response and Reprogramming Potential of Human Müller Cell Line MIO-M1 Exposed to High Glucose and Glucose Fluctuations. Int J Mol Sci 2024; 25:12877. [PMID: 39684590 DOI: 10.3390/ijms252312877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal neurodegeneration (RN), an early marker of diabetic retinopathy (DR), is closely associated with Müller glia cells (MGs) in diabetic subjects. MGs play a pivotal role in maintaining retinal homeostasis, integrity, and metabolic support and respond to diabetic stress. In lower vertebrates, MGs have a strong regenerative response and can completely repair the retina after injuries. However, this ability diminishes as organisms become more complex. The aim of this study was to investigate the gliotic response and reprogramming potential of the human Müller cell line MIO-M1 cultured in normoglycemic (5 mM glucose, NG) and hyperglycemic (25 mM glucose, HG) conditions and then exposed to sustained high-glucose and glucose fluctuation (GF) treatments to mimic the human diabetic conditions. The results showed that NG MIO-M1 cells exhibited a dynamic activation to sustained high-glucose and GF treatments by increasing GFAP and Vimentin expression together, indicative of gliotic response. Increased expression of SHH and SOX2 were also observed, foreshadowing reprogramming potential. Conversely, HG MIO-M1 cells showed increased levels of the indexes reported above and adaptation/desensitization to sustained high-glucose and GF treatments. These findings indicate that MIO-M1 cells exhibit a differential response under various glucose treatments, which is dependent on the metabolic environment. The in vitro model used in this study, based on a well-established cell line, enables the exploration of how these responses occur in a controlled, reproducible system and the identification of strategies to promote neurogenesis over neurodegeneration. These findings contribute to the understanding of MGs responses under diabetic conditions, which may have implications for future therapeutic approaches to diabetes-associated retinal neurodegeneration.
Collapse
Affiliation(s)
- Benedetta Russo
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Giorgia D'Addato
- Section of Histology and Embryology, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giulia Salvatore
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marika Menduni
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Simona Frontoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Carbone
- Unit of Emergency Room, Emergency Medicine and Internal Medicine, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Gioia Klinger
- Section of Histology and Embryology, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fabiana Picconi
- Unit of Endocrinology and Diabetology, Isola Tiberina-Gemelli Isola Hospital, 00186 Rome, Italy
| | - Gina La Sala
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- CNR Institute of Biochemistry and Cell Biology, 00015 Rome, Italy
| |
Collapse
|
4
|
Emmerich K, Hageter J, Hoang T, Lyu P, Sharrock AV, Ceisel A, Thierer J, Chunawala Z, Nimmagadda S, Palazzo I, Matthews F, Zhang L, White DT, Rodriguez C, Graziano G, Marcos P, May A, Mulligan T, Reibman B, Saxena MT, Ackerley DF, Qian J, Blackshaw S, Horstick E, Mumm JS. A large-scale CRISPR screen reveals context-specific genetic regulation of retinal ganglion cell regeneration. Development 2024; 151:dev202754. [PMID: 39007397 PMCID: PMC11361637 DOI: 10.1242/dev.202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.
Collapse
Affiliation(s)
- Kevin Emmerich
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Hageter
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Thanh Hoang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Pin Lyu
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anneliese Ceisel
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Thierer
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zeeshaan Chunawala
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saumya Nimmagadda
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Isabella Palazzo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liyun Zhang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David T. White
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Catalina Rodriguez
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gianna Graziano
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Marcos
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam May
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tim Mulligan
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Barak Reibman
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meera T. Saxena
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jiang Qian
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric Horstick
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Jeff S. Mumm
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Pavlou M, Probst M, Blasdel N, Prieve AR, Reh TA. The impact of timing and injury mode on induced neurogenesis in the adult mammalian retina. Stem Cell Reports 2024; 19:239-253. [PMID: 38278154 PMCID: PMC10874861 DOI: 10.1016/j.stemcr.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
Regeneration of neurons has important implications for human health, and the retina provides an accessible system to study the potential of replacing neurons following injury. In previous work, we generated transgenic mice in which neurogenic transcription factors were expressed in Müller glia (MG) and showed that they stimulated neurogenesis following inner retinal damage. It was unknown, however, whether the timing or mode of injury mattered in this process. Here, we explored these parameters on induced neurogenesis from MG and show that MG expressing Ascl1 will generate new bipolar neurons with similar efficiency irrespective of injury mode or timing. However, MG that express Ascl1-Atoh1 produce a new type of retinal ganglion-like cell after outer retinal damage, which is absent with inner retinal damage. Our data suggest that although cell fate is primarily dictated by neurogenic transcription factors, the inflammatory state of MG relative to injury can influence the outcome of induced neurogenesis.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Aric R Prieve
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Rzhanova LA, Markitantova YV, Aleksandrova MA. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024; 13:281. [PMID: 38334673 PMCID: PMC10854871 DOI: 10.3390/cells13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (L.A.R.); (M.A.A.)
| | | |
Collapse
|