1
|
Huang D, Zhang L, Liu Y, Wang J, Zhang J, Baines KJ, Liu G, Hsu ACY, Wang F, Chen Z, Oliver BG, Xie M, Qin L, Liu D, Wan H, Luo F, Li W, Wang G, Gibson PG. Activated non-neuronal cholinergic system correlates with non-type 2 inflammation and exacerbations in severe asthma. Ann Allergy Asthma Immunol 2024; 133:64-72.e4. [PMID: 38499061 DOI: 10.1016/j.anai.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Non-neuronal cholinergic system (NNCS) contributes to various inflammatory airway diseases. However, the role of NNCS in severe asthma (SA) remains largely unexplored. OBJECTIVE To explore airway NNCS in SA. METHODS In this prospective cohort study based on the Australasian Severe Asthma Network in a real-world setting, patients with SA (n = 52) and non-SA (n = 104) underwent clinical assessment and sputum induction. The messenger RNA (mRNA) levels of NNCS components and proinflammatory cytokines in the sputum were detected using real-time quantitative polymerase chain reaction, and the concentrations of acetylcholine (Ach)-related metabolites were evaluated using liquid chromatography coupled with tandem mass spectrometry. Asthma exacerbations were prospectively investigated during the next 12 months. The association between NNCS and future asthma exacerbations was also analyzed. RESULTS Patients with SA were less controlled and had worse airway obstruction, a lower bronchodilator response, higher doses of inhaled corticosteroids, and more add-on treatments. The sputum mRNA levels of NNCS components, such as muscarinic receptors M1R-M5R, OCT3, VACHT, and ACHE; proinflammatory cytokines; and Ach concentration in the SA group were significantly higher than those in the non-SA group. Furthermore, most NNCS components positively correlated with non-type (T) 2 inflammatory profiles, such as sputum neutrophils, IL8, and IL1B. In addition, the mRNA levels of sputum M2R, M3R, M4R, M5R, and VACHT were independently associated with an increased risk of moderate-to-severe asthma exacerbations. CONCLUSION This study indicated that the NNCS was significantly activated in SA, leading to elevated Ach and was associated with clinical features, non-T2 inflammation, and future exacerbations of asthma, highlighting the potential role of the NNCS in the pathogenesis of SA. CLINICAL TRIAL REGISTRATION ChiCTR-OOC-16009529 (http://www.chictr.org.cn).
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Li Zhang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Ying Liu
- The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Katherine J Baines
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia; Centre for Inflammation, Centenary Institute, Camperdown, NSW, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia; Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Fang Wang
- Department of Pathogen Biology, Basic Medical College, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China.
| | - Peter G Gibson
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia; National Health and Medical Research Council Center for Research Excellence in Severe Asthma and Treatable Traits, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
2
|
He LX, Deng K, Wang J, Zhang X, Wang L, Zhang HP, Xie M, Chen ZH, Zhang J, Chen-Yu Hsu A, Zhang L, Oliver BG, Wark PAB, Qin L, Gao P, Wan HJ, Liu D, Luo FM, Li WM, Wang G, Gibson PG. Clinical Subtypes of Neutrophilic Asthma: A Cluster Analysis From Australasian Severe Asthma Network. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:686-698.e8. [PMID: 37778630 DOI: 10.1016/j.jaip.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Clinical heterogeneity may exist within asthma subtypes defined by inflammatory markers. However, the heterogeneity of neutrophilic asthma (NA) remains largely unexplored. OBJECTIVE To explore potential clusters and the stability of NA. METHODS Participants with NA from the Australasian Severe Asthma Network underwent a multidimensional assessment. They were then asked to participate in a 12-month longitudinal cohort study. We explored potential clusters using a hierarchical cluster analysis and validated the differential future risk of asthma exacerbations in the identified clusters. A decision tree analysis was developed to predict cluster assignments. Finally, the stability of prespecified clusters was examined within 1 month. RESULTS Three clusters were identified in 149 patients with NA. Cluster 1 (n = 99; 66.4%) was characterized by female-predominant nonsmokers with well-controlled NA, cluster 2 (n = 16; 10.7%) by individuals with comorbid anxiety/depressive symptoms with poorly controlled NA, and cluster 3 by older male smokers with late-onset NA. Cluster 2 had a greater proportion of participants with severe exacerbations (P = .005), hospitalization (P = .010), and unscheduled visits (P = .013) and a higher number of emergency room visits (P = .039) than that of the other two clusters. The decision tree assigned 92.6% of participants correctly. Most participants (87.5%; n = 7) in cluster 2 had a stable NA phenotype, whereas participants of clusters 1 and 3 had variable phenotypes. CONCLUSIONS We identified three clinical clusters of NA, in which cluster 2 represents an uncontrolled and stable NA subtype with an elevated risk of exacerbations. These findings have clinical implications for the management of NA.
Collapse
Affiliation(s)
- Li Xiu He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Ke Deng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Xin Zhang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Ping Zhang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Hong Chen
- Shanghai Institute of Respiratory Disease, Respiratory Division of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Alan Chen-Yu Hsu
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ling Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hua Jing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China.
| | - Peter Gerard Gibson
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, University of Newcastle, Newcastle, New South Wales, Australia; National Health and Medical Research Council Center for Excellence in Severe Asthma, Newcastle, New South Wales, Australia
| |
Collapse
|
3
|
Menzella F, Antonicelli L, Cottini M, Imeri G, Corsi L, Di Marco F. Oscillometry in severe asthma: the state of the art and future perspectives. Expert Rev Respir Med 2023; 17:563-575. [PMID: 37452692 DOI: 10.1080/17476348.2023.2237872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Approximately 3-10% of people with asthma have severe asthma (SA). Patients with SA have greater impairment in daily life and much higher costs. Even if asthma affects the entire bronchial tree, small airways have been recognized as the major site of airflow limitation. There are several tools for studying small airway dysfunction (SAD), but certainly the most interesting is oscillometry. Despite several studies, the clinical usefulness of oscillometry in asthma is still in question. This paper aims to provide evidence supporting the use of oscillometry to improve the management of SA in clinical practice. AREAS COVERED In the ATLANTIS study, SAD was strongly evident across all severity. Various tools are available for evaluation of SAD, and certainly an integrated use of these can provide complete and detailed information. However, the most suitable method is oscillometry, implemented for clinical routine by using either small pressure impulses or small pressure sinusoidal waves. EXPERT OPINION Oscillometry, despite its different technological implementations is the best tool for determining the impact of SAD on asthma and its control. Oscillometry will also be increasingly useful for choosing the appropriate drug, and there is ample room for a more widespread diffusion in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Gianluca Imeri
- Respiratory Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Treviso, Italy
| | - Fabiano Di Marco
- Respiratory Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
- Department of Health Sciences, University of Milan, Bergamo, Italy
| |
Collapse
|