1
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Talloji P, Nehlin L, Hüttel B, Winter N, Černý M, Dufková H, Hamali B, Hanczaryk K, Novák J, Hermanns M, Drexler N, Eifler K, Schlaich N, Brzobohatý B, Bachmair A. Transcriptome, metabolome and suppressor analysis reveal an essential role for the ubiquitin-proteasome system in seedling chloroplast development. BMC PLANT BIOLOGY 2022; 22:183. [PMID: 35395773 PMCID: PMC8991883 DOI: 10.1186/s12870-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Many regulatory circuits in plants contain steps of targeted proteolysis, with the ubiquitin proteasome system (UPS) as the mediator of these proteolytic events. In order to decrease ubiquitin-dependent proteolysis, we inducibly expressed a ubiquitin variant with Arg at position 48 instead of Lys (ubK48R). This variant acts as an inhibitor of proteolysis via the UPS, and allowed us to uncover processes that are particularly sensitive to UPS perturbation. RESULTS Expression of ubK48R during germination leads to seedling death. We analyzed the seedling transcriptome, proteome and metabolome 24 h post ubK48R induction and confirmed defects in chloroplast development. We found that mutations in single genes can suppress seedling lethality, indicating that a single process in seedlings is critically sensitive to decreased performance of the UPS. Suppressor mutations in phototropin 2 (PHOT2) suggest that a contribution of PHOT2 to chloroplast protection is compromised by proteolysis inhibition. CONCLUSIONS Overall, the results reveal protein turnover as an integral part of a signal transduction chain that protects chloroplasts during development.
Collapse
Affiliation(s)
- Prabhavathi Talloji
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Lilian Nehlin
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Bulut Hamali
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
- Present address: Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, USA
| | - Katarzyna Hanczaryk
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Monika Hermanns
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Nicole Drexler
- Vienna Biocenter Core Facilities, Electron Microscopy, A-1030, Vienna, Austria
| | - Karolin Eifler
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Nikolaus Schlaich
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|