1
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
2
|
Hou M, Fan W, Zhong D, Dai X, Wang Q, Liu W, Li S. Ribosome Pausing Negatively Regulates Protein Translation in Maize Seedlings during Dark-to-Light Transitions. Int J Mol Sci 2024; 25:7985. [PMID: 39063227 PMCID: PMC11277263 DOI: 10.3390/ijms25147985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Regulation of translation is a crucial step in gene expression. Developmental signals and environmental stimuli dynamically regulate translation via upstream small open reading frames (uORFs) and ribosome pausing. Recent studies have revealed many plant genes that are specifically regulated by uORF translation following changes in growth conditions, but ribosome-pausing events are less well understood. In this study, we performed ribosome profiling (Ribo-seq) of etiolated maize (Zea mays) seedlings exposed to light for different durations, revealing hundreds of genes specifically regulated at the translation level during the early period of light exposure. We identified over 400 ribosome-pausing events in the dark that were rapidly released after illumination. These results suggested that ribosome pausing negatively regulates translation from specific genes, a conclusion that was supported by a non-targeted proteomics analysis. Importantly, we identified a conserved nucleotide motif downstream of the pausing sites. Our results elucidate the role of ribosome pausing in the control of gene expression in plants; the identification of the cis-element at the pausing sites provides insight into the mechanisms behind translation regulation and potential targets for artificial control of plant translation.
Collapse
Affiliation(s)
- Mingming Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.H.); (W.F.); (Q.W.)
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.H.); (W.F.); (Q.W.)
| | - Deyi Zhong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xing Dai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.H.); (W.F.); (Q.W.)
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.H.); (W.F.); (Q.W.)
| | - Shengben Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.H.); (W.F.); (Q.W.)
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
3
|
Mukherjee A, Dwivedi S, Bhagavatula L, Datta S. Integration of light and ABA signaling pathways to combat drought stress in plants. PLANT CELL REPORTS 2023; 42:829-841. [PMID: 36906730 DOI: 10.1007/s00299-023-02999-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
Drought is one of the most critical stresses, which causes an enormous reduction in crop yield. Plants develop various strategies like drought escape, drought avoidance, and drought tolerance to cope with the reduced availability of water during drought. Plants adopt several morphological and biochemical modifications to fine-tune their water-use efficiency to alleviate drought stress. ABA accumulation and signaling plays a crucial role in the response of plants towards drought. Here, we discuss how drought-induced ABA regulates the modifications in stomatal dynamics, root system architecture, and the timing of senescence to counter drought stress. These physiological responses are also regulated by light, indicating the possibility of convergence of light- and drought-induced ABA signaling pathways. In this review, we provide an overview of investigations reporting light-ABA signaling cross talk in Arabidopsis as well as other crop species. We have also tried to describe the potential role of different light components and their respective photoreceptors and downstream factors like HY5, PIFs, BBXs, and COP1 in modulating drought stress responses. Finally, we highlight the possibilities of enhancing the plant drought resilience by fine-tuning light environment or its signaling components in the future.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India.
| |
Collapse
|
4
|
Liang X, Qian R, Wang D, Liu L, Sun C, Lin X. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses. BIOLOGY 2022; 11:biology11111590. [PMID: 36358291 PMCID: PMC9687549 DOI: 10.3390/biology11111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 01/25/2023]
Abstract
Aldehydes, derivatives of lipids, are ubiquitously produced through non-enzymatic and enzymatic pathways in higher plants and participate in many physiological and biological processes. Increasing evidence demonstrates that aldehydes are involved in plants response to many abiotic stresses, such as light, drought, heat and nutrient deficiency. In plant cells, endogenously triggered or exogenously applied high concentrations of aldehydes can damage proteins and nucleic acid, disturb redox homeostasis, and consequently inhibit plant growth; therefore, they are considered cytotoxins. Aldehyde levels are also used as biomarkers to evaluate the health status of plants. Further genetic research shows that several enzymes have strong capacities to detoxify these electrophilic aldehydes. Small molecules, such as carnosine and glutathione, also exhibit the ability to scavenge aldehydes, effectively promoting plant growth. Recently, increasing evidence has shown that certain aldehydes at certain concentrations can upregulate survival genes, activate antioxidant responses, increase defense against pathogens and stimulate plant growth. This review summarizes recent studies of lipid-derived aldehydes in higher plants, mainly focusing on the generation pathway, toxic effects, and detoxification strategies. In addition, the signaling effects of aldehydes in plants are also discussed.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Liu
- Iterdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|