1
|
Wei X, Xu X, Fu Y, Yang X, Wu L, Tian P, Yang M, Wu Z. Effects of Soybean Phosphate Transporter Gene GmPHT2 on Pi Transport and Plant Growth under Limited Pi Supply Condition. Int J Mol Sci 2023; 24:11115. [PMID: 37446294 DOI: 10.3390/ijms241311115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphorus is an essential macronutrient for plant growth and development, but phosphate resources are limited and rapidly depleting due to massive global agricultural demand. This study identified two genes in the phosphate transporter 2 (PHT2) family of soybean by bioinformatics. The expression patterns of two genes by qRT-PCR at leaves and all were induced by low-phosphate stress. After low-phosphate stress, GmPHT2;2 expression was significantly higher than GmPHT2;1, and the same trend was observed throughout the reproductive period. The result of heterologous expression of GmPHT2 in Arabidopsis knockout mutants of atpht2;1 shows that chloroplasts and whole-plant phosphorus content were significantly higher in plants complementation of GmPHT2;2 than in plants complementation of GmPHT2;1. This suggests that GmPHT2;2 may play a more important role in plant phosphorus metabolic homeostasis during low-phosphate stress than GmPHT2;1. In the yeast backfill assay, both genes were able to backfill the ability of the defective yeast to utilize phosphorus. GmPHT2 expression was up-regulated by a low-temperature treatment at 4 °C, implying that GmPHT2;1 may play a role in soybean response to low-temperature stress, in addition to being involved in phosphorus transport processes. GmPHT2;1 and GmPHT2;2 exhibit a cyclic pattern of circadian variation in response to light, with the same pattern of gene expression changes under red, blue, and white light conditions. GmPHT2 protein was found in the chloroplast, according to subcellular localization analysis. We conclude that GmPHT2 is a typical phosphate transporter gene that can improve plant acquisition efficiency.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotian Xu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yu Fu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Lei Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Ping Tian
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Zou YN, Xu YJ, Liu RC, Huang GM, Kuča K, Srivastava AK, Hashem A, Abd_Allah EF, Wu QS. Two different strategies of Diversispora spurca-inoculated walnut seedlings to improve leaf P acquisition at low and moderate P levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1140467. [PMID: 36909381 PMCID: PMC9995707 DOI: 10.3389/fpls.2023.1140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Walnut (Juglans regia) is an important nut tree species in the world, whereas walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots, but whether and how AMF promotes walnut growth, physiological activities, and P acquisition is unclear. The present study aimed to evaluate the effects of Diversispora spurca on plant growth, chlorophyll component concentrations, leaf gas exchange, sugar and P concentrations, and expression of purple acid phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var. Liaohe 1 seedling under moderate (100 μmol/L P) and low P (1 μmol/L P) levels conditions. Three months after inoculation, the root mycorrhizal colonization rate and soil hyphal length were 45.6-53.2% and 18.7-39.9 cm/g soil, respectively, and low P treatment significantly increased both root mycorrhizal colonization rate and soil hyphal length. Low P levels inhibited plant growth (height, stem diameter, and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate and stomatal conductance), while AMF colonization significantly increased these variables at moderate and low P levels. Low P treatment limited the level of chlorophyll a, but AMF colonization did not significantly affect the level of chlorophyll components, independent on soil P levels. AMF colonization also increased leaf glucose at appropriate P levels and leaf fructose at low P levels than non-AMF treatment. AMF colonization significantly increased leaf P concentration by 21.0-26.2% than non-AMF colonization at low and moderate P levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition of walnut seedlings at different P levels, where mycorrhizal promotion of P acquisition was dominated by direct mycorrhizal involvement in P uptake at low P levels, while up-regulation of host PAPs and PTs expressions at moderate P levels.
Collapse
Affiliation(s)
- Ying-Ning Zou
- Tibet Plateau Walnut Industry Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | | | - Rui-Cheng Liu
- Tibet Plateau Walnut Industry Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Guang-Ming Huang
- Tibet Plateau Walnut Industry Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- Tibet Plateau Walnut Industry Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
3
|
Wei X, Fu Y, Yu R, Wu L, Wu Z, Tian P, Li S, Yang X, Yang M. Comprehensive sequence and expression profile analysis of the phosphate transporter gene family in soybean. Sci Rep 2022; 12:20883. [PMID: 36463363 PMCID: PMC9719489 DOI: 10.1038/s41598-022-25378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. However, little is known about transporters in soybean. Therefore, Searched the Genome Database for Soybean, 57 GmPHTs family members were identified in soybean, Phylogenetic analysis suggested that members of the PHTs gene family can be divided into six clades. Collinearity analysis revealed that most of the GmPHT genes shared syntenic relationships with PHTs members in Arabidopsis thaliana and that large segment duplication played a major driving force for GmPHTs evolution in addition to tandem duplication. Further analysis of the promoter revealed that light-responsive elements and abiotic stress-responsive elements were widely distributed within the promoter regions of GmPHT genes. Based on RNA-seq data, GmPHTs showed different expression patterns in roots and leaves of soybean treated with long-term low phosphorus and short-term low phosphorus, in addition, the expression levels of GmPHT genes can be regulated by drought stresses, it was implied that the induced expression of GmPHTs could promote phosphorus uptake and transport in soybean and thus adapt to low phosphorus and drought stress, which is the first step dissection of Pi transport system and probably refers to new roles of PHTs genes in soybean.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yu Fu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Renjie Yu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Lei Wu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Zhihai Wu
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China ,grid.464353.30000 0000 9888 756XNational Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Tian
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Siyuan Li
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Xue Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Meiying Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
4
|
Cytological and iTRAQ-based quantitative proteomic analyses of hau CMS in Brassica napus L. J Proteomics 2019; 193:230-238. [PMID: 30385414 DOI: 10.1016/j.jprot.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 02/04/2023]
Abstract
Hau cytoplasmic male sterility (CMS) is a new type of CMS that was originally identified in Brassica juncea and subsequently transferred to B. napus and B. rapa. To further elucidate the molecular mechanism underlying hau CMS in B. napus, semithin section analysis and iTRAQ-based differential proteomic analysis were performed to compare the hau CMS and its maintainer line. Cytological analysis revealed that abnormal anther development in the hau CMS line was arrested during the differentiation of stamen archesporial cells. qRT-PCR analysis showed that the sterility gene orf288 was expressed at substantially higher levels in CMS anthers than in anthers with restored fertility. In comparison with the maintainer line, a total of 186 differentially abundant proteins were identified in the CMS line, 58 of which exhibited increased accumulation and 128 exhibited decreased accumulation. Bioinformatics analysis showed that proteins involved in carbohydrate and energy metabolism, such as those involved in oxidative phosphorylation, glycolysis/gluconeogenesis and pyruvate metabolism, exhibited decreased accumulation in the hau CMS line, whereas those involved in oxidative stress, antagonism of cell death and protein processing exhibited increased accumulation in the hau CMS line, indicating the potential roles of carbohydrate metabolism and energy supply in the regulation of hau anther abortion. BIOLOGICAL SIGNIFICANCE: Cytoplasmic male sterility (CMS) is one of the most efficient ways to produce hybrid seeds in crops. CMS is mainly caused by mitochondrial mutation and has been an important model for investigation of cytoplasmic and nuclear interactions in various plant species. Hau is a new type of CMS line in Brassica with completely abortive anthers. Although studies have been conducted to identify the key genes associated with CMS, the molecular mechanisms underlying hau CMS remain unclear. In this study, cytological, molecular, and proteomic approaches were used to reveal the mechanism underlying hau CMS in B. napus. Based on a comparison of the protein expression profiles of the hau CMS line and its maintainer line to elucidate the mechanisms underlying hau CMS, a potential protein regulatory network is proposed herein. These results may provide new insights into the molecular basis of hau CMS in B. napus.
Collapse
|
5
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
6
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
7
|
Zhang Y, Sun T, Liu S, Dong L, Liu C, Song W, Liu J, Gai S. MYC cis-Elements in PsMPT Promoter Is Involved in Chilling Response of Paeonia suffruticosa. PLoS One 2016; 11:e0155780. [PMID: 27228117 PMCID: PMC4882030 DOI: 10.1371/journal.pone.0155780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
The MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed. The PsMPT transcript was detected in different tree peony tissues and was highly expressed in the flower organs, including petal, stigma and stamen. An 1174 bp of the PsMPT promoter was isolated by TAIL-PCR, and the PsMPT promoter::GUS transgenic Arabidopsis was generated and analyzed. GUS staining and qPCR showed that the promoter was active in mainly the flower stigma and stamen. Moreover, it was found that the promoter activity was enhanced by chilling, NaCl, GA, ACC and NAA, but inhibited by ABA, mannitol and PEG. In transgenic plants harboring 421 bp of the PsMPT promoter, the GUS gene expression and the activity were significantly increased by chilling treatment. When the fragment from -421 to -408 containing a MYC cis-element was deleted, the chilling response could not be observed. Further mutation analysis confirmed that the MYC element was one of the key motifs responding to chilling in the PsMPT promoter. The present study provides useful information for further investigation of the regulatory mechanism of PsMPT during the endo-dormancy release.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Tingzhao Sun
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Shaoqing Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Lei Dong
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Wenwen Song
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Jingjing Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
- * E-mail:
| |
Collapse
|
8
|
Jia F, Wan X, Zhu W, Sun D, Zheng C, Liu P, Huang J. Overexpression of Mitochondrial Phosphate Transporter 3 Severely Hampers Plant Development through Regulating Mitochondrial Function in Arabidopsis. PLoS One 2015; 10:e0129717. [PMID: 26076137 PMCID: PMC4468087 DOI: 10.1371/journal.pone.0129717] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are abundant and important organelles present in nearly all eukaryotic cells, which maintain metabolic communication with the cytosol through mitochondrial carriers. The mitochondrial membrane localized phosphate transporter (MPT) plays vital roles in diverse development and signaling processes, especially the ATP biosynthesis. Among the three MPT genes in Arabidopsis genome, AtMPT3 was proven to be a major member, and its overexpression gave rise to multiple developmental defects including curly leaves with deep color, dwarfed stature, and reduced fertility. Transcript profiles revealed that genes involved in plant metabolism, cellular redox homeostasis, alternative respiration pathway, and leaf and flower development were obviously altered in AtMPT3 overexpression (OEMPT3) plants. Moreover, OEMPT3 plants also accumulated higher ATP content, faster respiration rate and more reactive oxygen species (ROS) than wild type plants. Overall, our studies showed that AtMPT3 was indispensable for Arabidopsis normal growth and development, and provided new sights to investigate its possible regulation mechanisms.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Xiaomin Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Pei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| |
Collapse
|
9
|
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One 2012; 7:e43530. [PMID: 22937061 PMCID: PMC3427375 DOI: 10.1371/journal.pone.0043530] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Qing Miao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
10
|
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate Import in Plants: Focus on the PHT1 Transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:83. [PMID: 22645553 PMCID: PMC3355772 DOI: 10.3389/fpls.2011.00083] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 05/17/2023]
Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Collapse
Affiliation(s)
- Laurent Nussaume
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Hélène Javot
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Elena Marin
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Nathalie Pochon
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Amal Ayadi
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Marie-Christine Thibaud
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| |
Collapse
|
11
|
Huang X, Zhu W, Dai S, Gai S, Zheng G, Zheng C. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). PLANTA 2008; 228:545-52. [PMID: 18566830 DOI: 10.1007/s00425-008-0757-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 05/08/2023]
Abstract
A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.
Collapse
Affiliation(s)
- Xin Huang
- College of Landscape and Architecture, Beijing Forestry University, Beijing, 100083 People's Republic of China.
| | | | | | | | | | | |
Collapse
|
12
|
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. PLANT, CELL & ENVIRONMENT 2007; 30:310-322. [PMID: 17263776 DOI: 10.1111/j.1365-3040.2006.01617.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes recent advances in this area and explores current data and hypotheses of how the plant Pi status affects the symbiosis. Finally, suggestions of an interrelationship of Pi and nitrogen (N) in the AM symbiosis are discussed.
Collapse
Affiliation(s)
- Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| |
Collapse
|
13
|
Choi JD, Hoshino A, Park KI, Park IS, Iida S. Spontaneous mutations caused by a Helitron transposon, Hel-It1, in morning glory, Ipomoea tricolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:924-34. [PMID: 17257169 DOI: 10.1111/j.1365-313x.2006.03007.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Helitrons are newcomers among eukaryotic DNA transposons and have originally been identified by computational analysis in the genomes of Arabidopsis, rice and nematode. They are distinguished from other transposons in their structural features, and their proposed transposition mechanisms are involved in rolling circle replication. Computer-predicted autonomous Helitrons with conserved terminal sequences 5'-TC and CTRR-3' are presumed to encode a putative transposase, Rep/Hel-TPase, which contains a characteristic nuclease/ligase domain for the replication-initiation protein (Rep) and a DNA helicase domain (Hel). Plant Helitrons are thought to encode an additional transposase, RPA-TPase, which is related to the largest subunit of the replication protein A (RPA70). Although Helitrons are found in diverse genomes, neither an autonomous element nor a transposition event has been reported. Here we show that a spontaneous pearly-s mutant of Ipomoea tricolor cv. Pearly Gates, exhibiting white flowers and isolated in approximately 1940, has an 11.5-kbp novel Helitron, named Hel-It1, integrated into the DFR-B gene for anthocyanin pigmentation. Hel-It1 shows the predicted plant Helitron structure for an autonomous element with the conserved termini and carrying the two putative transposase genes, Rep/Hel-TPase and RPA-TPase, which contain a nonsense and a frameshift mutation, respectively. Hel-It1-related elements are scattered in the Ipomoea genome, and only a fraction of the pearly-s plants were found to carry Hel-It1 at another insertion site. The pearly-s mutant appears to bear an autonomous element and to express the wild-type RPA-TPase transcripts. The structures of a putative autonomous element and its transposase genes are discussed.
Collapse
Affiliation(s)
- Jeong-Doo Choi
- Division of Molecular Genetics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. TRENDS IN PLANT SCIENCE 2005; 10:22-9. [PMID: 15642520 DOI: 10.1016/j.tplants.2004.12.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungi colonize the root systems of most land plants and modulate plant growth by enhancing the availability of nutrients, mainly phosphorus, for plant nutrition. Recently identified genes encoding mycorrhiza-specific plant phosphate transporters have enabled fundamental problems in arbuscular mycorrhizal symbiosis research to be addressed. Because phosphate transport is a key feature of this symbiosis, the study of phosphate transport mechanisms and their gene regulation will further our understanding of the intimate interaction between the two symbiotic partners.
Collapse
Affiliation(s)
- Vladimir Karandashov
- Federal Institute of Technology Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland
| | | |
Collapse
|
15
|
Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G. Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol 2004; 51:307-17. [PMID: 14756774 DOI: 10.1046/j.1365-2958.2003.03810.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most cellular ATP is produced within the mitochondria from ADP and Pi which are delivered across the inner-membrane by specific nuclearly encoded polytopic carriers. In Saccharomyces cerevisiae, some of these carriers and in particular the ADP/ATP carrier, are represented by several related isoforms that are distinct in their pattern of expression. Until now, only one mitochondrial Pi carrier (mPic) form, encoded by the MIR1 gene in S. cerevisiae, has been described. Here we show that the gene product encoded by the YER053C ORF also participates in the delivery of phosphate to the mitochondria. We have called this gene PIC2 for Pi carrier isoform 2. Overexpression of PIC2 compensates for the mitochondrial defect of the double mutant Deltamir1 Deltapic2 and restores phosphate transport activity in mitochondria swelling experiments. The existence of two isoforms of mPic does not seem to be restricted to S. cerevisiae as two Arabidopsis thaliana cDNAs encoding two different mPic-like proteins are also able to complement the double mutant Deltamir1 Deltapic2. Finally, we demonstrate that Pic2p is a mitochondrial protein and that its steady state level increases at high temperature. We propose that Pic2p is a minor form of mPic which plays a role under specific stress conditions.
Collapse
Affiliation(s)
- Patrice Hamel
- Centre de Génétique Moléculaire, Avenue de la Terrasse, 91198- Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Akamine S, Nakamori K, Chechetka SA, Banba M, Umehara Y, Kouchi H, Izui K, Hata S. cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:97-101. [PMID: 12697335 DOI: 10.1016/s0167-4781(03)00042-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A full-length cDNA for squalene synthase was isolated from Lotus japonicus, a model leguminous plant. The transcript was abundant in roots, symbiotic root nodules, and shoots, in that order. In situ hybridization revealed that the mRNA level is high in expanding root cells but low in dividing root tip ones. The transcript is also abundant in vascular bundles and the basal portions of mature nodules. L. japonicus squalene synthase has an unusual Asp residue near the active site, where mammalian enzymes have Gln, and replacement of the Gln by Glu has been reported to cause severe inactivation. Site-directed mutagenesis of the L. japonicus enzyme and assaying in vitro showed that this Asp residue can be substituted by not only Gln but also Glu, suggesting that the local structure of plant squalene synthases is different from that of mammalian enzymes.
Collapse
Affiliation(s)
- Satomi Akamine
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|