1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Zhang J, Zhang S, Zheng Z, Lu Z, Yang Y. Genomic divergence between two sister Ostrya species through linked selection and recombination. Ecol Evol 2022; 12:e9611. [PMID: 36540075 PMCID: PMC9754895 DOI: 10.1002/ece3.9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Studying the evolution of genomic divergence between lineages is a topical issue in evolutionary biology. However, the evolutionary forces that shape the heterogeneous divergence of the genomic landscape are still poorly understood. Here, two wind-pollinated sister-species (Ostrya japonica and O. chinensis) are used to explore what these potential forces might be. A total of 40 individuals from 16 populations across their main distribution areas in China were sampled for genome-wide resequencing. Population demography analyses revealed that these two sister-species diverged at 3.06-4.43 Mya. Both population contraction and increased gene flow were detected during glacial periods, suggesting secondary contact at those times. All three parameters (D XY, π, and ρ) decreased in those regions showing high levels of differentiation (F ST). These findings indicate that linked selection and recombination played a key role in the genomic heterogeneous differentiation between the two Ostrya species. Genotype-environment association analyses showed that precipitation was the most important ecological factor for speciation. Such environmentally related genes and positive selection genes may have contributed to local adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
3
|
Chai L, Zhang J, Li H, Zheng B, Jiang J, Cui C, Jiang L. Investigation for a multi-silique trait in Brassica napus by alternative splicing analysis. PeerJ 2020; 8:e10135. [PMID: 33083151 PMCID: PMC7548069 DOI: 10.7717/peerj.10135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Flower and fruit development are vital stages of the angiosperm lifecycle. We previously investigated the multi-silique trait in the rapeseed (Brassica napus) line zws-ms on a genomic and transcriptomic level, leading to the identification of two genomic regions and several candidate genes associated with this trait. However, some events on the transcriptome level, like alternative splicing, were poorly understood. Methods Plants from zws-ms and its near-isogenic line (NIL) zws-217 were both grown in Xindu with normal conditions and a colder area Ma'erkang. Buds from the two lines were sampled and RNA was isolated to perform the transcriptomic sequencing. The numbers and types of alternative splicing (AS) events from the two lines were counted and classified. Genes with AS events and expressed differentially between the two lines, as well as genes with AS events which occurred in only one line were emphasized. Their annotations were further studied. Results From the plants in Xindu District, an average of 205,496 AS events, which could be sorted into five AS types, were identified. zws-ms and zws-217 shared highly similar ratios of each AS type: The alternative 5' and 3' splice site types were the most common, while the exon skipping type was observed least often. Eleven differentially expressed AS genes were identified, of which four were upregulated and seven were downregulated in zws-ms. Their annotations implied that five of these genes were directly associated with the multi-silique trait. While samples from colder area Ma'erkang generated generally reduced number of each type of AS events except for Intron Retention; but the number of differentially expressed AS genes increased significantly. Further analysis found that among the 11 differentially expressed AS genes from Xindu, three of them maintained the same expression models, while the other eight genes did not show significant difference between the two lines in expression level. Additionally, the 205 line-specific expressed AS genes were analyzed, of which 187 could be annotated, and two were considered to be important. Discussion This study provides new insights into the molecular mechanism of the agronomically important multi-silique trait in rapeseed on the transcriptome level and screens out some environment-responding candidate genes.
Collapse
Affiliation(s)
- Liang Chai
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Jinfang Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Haojie Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Benchuan Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Jun Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Waterworth WM, Drury GE, Blundell-Hunter G, West CE. Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:545-57. [PMID: 26358508 PMCID: PMC4949998 DOI: 10.1111/tpj.13020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/07/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by recombination pathways is essential for plant growth and fertility. The recombination endonuclease MRE11 plays important roles in sensing and repair of DNA DSBs. Here we demonstrate protein interaction between Arabidopsis MRE11 and the histone acetyltransferase TAF1, a TATA-binding protein Associated Factor (TAF) of the RNA polymerase II transcription initiation factor complex TFIID. Arabidopsis has two TAF1 homologues termed TAF1 and TAF1b and mutant taf1b lines are viable and fertile. In contrast, taf1 null mutations are lethal, demonstrating that TAF1 is an essential gene. Heterozygous taf1+/- plants display abnormal segregation of the mutant allele resulting from defects in pollen tube development, indicating that TAF1 is important for gamete viability. Characterization of an allelic series of taf1 lines revealed that hypomorphic mutants are viable but display developmental defects and reduced plant fertility. Hypersensitivity of taf1 mutants lacking the C-terminal bromodomain to X-rays and mitomycin C, but not to other forms of abiotic stress, established a specific role for TAF1 in plant DNA repair processes. Collectively these studies reveal a function for TAF1 in plant resistance to genotoxic stress, providing further insight into the molecular mechanisms of the DNA damage response in plants.
Collapse
Affiliation(s)
- Wanda M Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | | - Christopher E West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination. PLoS One 2015; 10:e0134709. [PMID: 26263547 PMCID: PMC4532415 DOI: 10.1371/journal.pone.0134709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023] Open
Abstract
The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.
Collapse
|
6
|
Moraga F, Aquea F. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:865. [PMID: 26528322 PMCID: PMC4604261 DOI: 10.3389/fpls.2015.00865] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 05/07/2023]
Abstract
Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
Collapse
Affiliation(s)
- Felipe Moraga
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: Felipe Aquea
| |
Collapse
|
7
|
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber APM, Izui K. A plastidial sodium-dependent pyruvate transporter. Nature 2011; 476:472-5. [DOI: 10.1038/nature10250] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 06/01/2011] [Indexed: 11/09/2022]
|
8
|
Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:684-92. [PMID: 20955179 DOI: 10.1111/j.1467-7652.2010.00567.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.
Collapse
Affiliation(s)
- Laura Toppino
- CRA-ORL Agricultural Research Council, Research Unit for Vegetable Crops, Montanaso Lombardo (Lo) Italy DSBB, Department of Biomolecular Sciences and Biotechnology, University of Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Gentile A, Da Cruz P, Tavares RG, Krug-Baldacin MG, Menossi M. Molecular characterization of ScTFIIAgamma, encoding the putative TFIIA small subunit from sugarcane. PLANT CELL REPORTS 2010; 29:857-864. [PMID: 20480367 DOI: 10.1007/s00299-010-0871-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Transcription mediated by RNA polymerase II depends on a set of different transcription factors to form the pre-initiation complex. TFIIA is involved in the construction of this complex and increases the affinity of TBP for the DNA union region in vitro. In this study, we characterized the ScTFIIAgamma gene, which encodes a homolog of the smaller subunit (gamma) of transcription factor TFIIA in sugarcane. RNA blot analysis showed that ScTFIIAgamma transcripts accumulate in all tissues evaluated, with higher levels in leaf roll and flowers. In situ hybridization showed that ScTFIIAgamma was expressed in different cells of the reproductive meristem. In sugarcane plantlets, methyl jasmonate and absicic acid treatments as well as phosphate starvation had no influence on ScTFIIAgamma transcript accumulation. The subcelullar localization assay demonstrates that ScTFIIAgamma protein is directed to the cell nucleus. The phylogenetic analysis, the expression in several tissues and under different treatments and the nuclear localization are in line with the putative role of ScTFIIAgamma as a subunit of basal transcription factor.
Collapse
Affiliation(s)
- Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875 Campinas, São Paulo 6109, Brazil
| | | | | | | | | |
Collapse
|
10
|
Lawit SJ, O'Grady K, Gurley WB, Czarnecka-Verner E. Yeast two-hybrid map of Arabidopsis TFIID. PLANT MOLECULAR BIOLOGY 2007; 64:73-87. [PMID: 17340043 DOI: 10.1007/s11103-007-9135-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/05/2007] [Indexed: 05/11/2023]
Abstract
General transcription factor IID (TFIID) is a multisubunit protein complex involved in promoter recognition and is fundamental to the nucleation of the RNA polymerase II transcriptional preinitiation complex. TFIID is comprised of the TATA binding protein (TBP) and 12-15 TBP-associated factors (TAFs). While general transcription factors have been extensively studied in metazoans and yeast, little is known about the details of their structure and function in the plant kingdom. This work represents the first attempt to compare the structure of a plant TFIID complex with that determined for other organisms. While no TAF3 homolog has been observed in plants, at least one homolog has been identified for each of the remaining 14 TFIID subunits, including both TAF14 and TAF15 which have previously been shown to be unique to either yeast or humans. The presence of both TAFs 14 and 15 in plants suggests ancient roles for these proteins that were lost in metazoans and fungi, respectively. Yeast two-hybrid interaction assays resulted in a total of 65 binary interactions between putative subunits of Arabidopsis TFIID, including 26 contacts unique to plants. The interaction matrix of Arabidopsis TAFs is largely consistent with the three-lobed topological map for yeast TFIID, which suggests that the structure and composition of TFIID have been highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Shai J Lawit
- Pioneer Hi-Bred International, Inc., a DuPont Company, 7300 N.W. 62nd Ave, PO Box 1004, Johnston, IA 50131-1004, USA
| | | | | | | |
Collapse
|
11
|
Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K. Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:134-46. [PMID: 17148695 DOI: 10.1093/pcp/pcl048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
TAF10 is one of the TATA box-binding protein (TBP)-associated factors (TAFs) which constitute a TFIID with a TBP. Initially most TAFs were thought to be necessary for accurate transcription initiation from a broad group of core promoters. However, it was recently revealed that several TAFs are expressed in limited tissues during animal embryogenesis, and are indispensable for normal development of the tissues. They are called 'selective' TAFs. In plants, however, little is known as to these 'selective' TAFs and their function. Here we isolated the Arabidopsis thaliana TAF10 gene (atTAF10), which is a single gene closely related to the TAF10 genes of other organisms. atTAF10 was expressed transiently during the development of several organs such as lateral roots, rosette leaves and most floral organs. Such an expression pattern was clearly distinct from that of Arabidopsis Rpb1, which encodes a component of RNA polymerase II, suggesting that atTAF10 functions in not only general transcription but also the selective expression of a subset of genes. In a knockdown mutant of atTAF10, we observed several abnormal phenotypes involved in meristem activity and leaf development, suggesting that atTAF10 is concerned in pleiotropic, but selected morphological events in Arabidopsis. These results clearly demonstrate that TAF10 is a 'selective' TAF in plants, providing a new insight into the function of TAFs in plants.
Collapse
Affiliation(s)
- Yosuke Tamada
- Laboratory of Plant Physiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Gao X, Ren F, Lu YT. The Arabidopsis Mutant stg1 Identifies a Function for TBP-Associated Factor 10 in Plant Osmotic Stress Adaptation. ACTA ACUST UNITED AC 2006; 47:1285-94. [PMID: 16945932 DOI: 10.1093/pcp/pcj099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plant salt tolerance is a complex trait involving many genes. To identify new salt tolerance determinants during seed germination, we have screened a population of chemically inducible activation-tagged Arabidopsis mutants. A mutant, designated stg1 (salt tolerance during germination 1), was obtained. The stg1 mutant is less sensitive than the wild type to NaCl and osmotic stress inhibition of germination in the presence of the inducer. Germination assays on media containing various salts upon inducer application indicate that the stg1 mutation enhances tolerance to Na(+) and K(+). Under salt stress, stg1 maintains a higher K(+)/Na(+) ratio and accumulates less proline than the wild-type control, suggesting that its salt tolerance mechanisms are mainly involved in the regulation of ion balance. STG1 encodes a putative Arabidopsis TATA box-binding protein (TBP)-associated factor 10 (atTAF10), which constitutes the transcriptional factor IID (TFIID) complex. Overexpression of atTAF10 under the control of the 35S promoter in Arabidopsis improves seed tolerance to salt stress during germination and the knocked-down mutant is more sensitive to salt stress, indicating the transcription initiation factor as a physiological target of salt toxicity in plants.
Collapse
Affiliation(s)
- Xiang Gao
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | |
Collapse
|
13
|
Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM. The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth. Dev Biol 2005; 285:91-100. [PMID: 16039640 DOI: 10.1016/j.ydbio.2005.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/30/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Recently, the complete Arabidopsis TAF family has been identified. To obtain functional information about Arabidopsis TAFs, we analyzed a T-DNA insertion mutant for AtTAF6. Segregation analysis showed that plants homozygous for the mutant allele were never found, indicating that inhibition of the AtTAF6 function is lethal. Genetic experiments also revealed that the male gametophyte was affected by the attaf6 mutation since significant reduced transmission of the mutant allele through the male gametophyte was observed. Detailed histological and morphological analysis showed that the T-DNA insertion in AtTAF6 specifically affects pollen tube growth, indicating that the transcriptional regulation of only a specific subset of genes is controlled by this basal transcription factor.
Collapse
Affiliation(s)
- Clara Lago
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|