1
|
Duan L, Li SJ, Su C, Sirichamorn Y, Han LN, Ye W, Lôc PK, Wen J, Compton JA, Schrire B, Nie ZL, Chen HF. Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae. Mol Phylogenet Evol 2021; 163:107235. [PMID: 34146677 DOI: 10.1016/j.ympev.2021.107235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The inverted repeat-lacking clade (IRLC) is one of the most derived clades within the subfamily Papilionoideae of the legume family, and includes various economically important plants, e.g., chickpeas, peas, liquorice, and the largest genus of angiosperms, Astragalus. Tribe Wisterieae is one of the earliest diverged groups of the IRLC, and its generic delimitation and spatiotemporal diversification needs further clarifications. Based on genome skimming data, we herein reconstruct the phylogenomic framework of the IRLC, and infer the inter-generic relationships and historical biogeography of Wisterieae. We redefine tribe Caraganeae to contain Caragana only, and tribe Astragaleae is reduced to the Erophaca-Astragalean clade. The chloroplast capture scenario was hypothesized as the most plausible explanation of the topological incongruences between the chloroplast CDSs and nuclear ribosomal DNA trees in both the Glycyrrhizinae-Adinobotrys-Wisterieae clade and the Chesneyeae-Caraganeae-Hedysareae clade. A new name, Caragana lidou L. Duan & Z.Y. Chang, is proposed within Caraganeae. Thirteen genera are herein supported within Wisterieae, including a new genus, Villosocallerya L. Duan, J. Compton & Schrire, segregated from Callerya. Our biogeographic analyses suggest that Wisterieae originated in the late Eocene and its most recent common ancestor (MRCA) was distributed in continental southeastern Asia. Lineages of Wisterieae remained in the ancestral area from the early Oligocene to the early Miocene. By the middle Miocene, Whitfordiodendron and the MRCA of Callerya-Kanburia-Villosocallerya Clade became disjunct between the Sunda area and continental southeastern Asia, respectively; the MRCA of Wisteria migrated to North America via the Bering land bridge. The ancestor of Austrocallerya and Padbruggea migrated to the Wallacea-Oceania area, which split in the early Pliocene. In the Pleistocene, Wisteria brachybotrys, W. floribunda and Wisteriopsis japonica reached Japan, and Callerya cinerea dispersed to South Asia. This study provides a solid phylogenomic for further evolutionary/biogeographic/systematic investigations on the ecologically diverse and economically important IRLC legumes.
Collapse
Affiliation(s)
- Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shi-Jin Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chun Su
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Yotsawate Sirichamorn
- Silpakorn University, Department of Biology, Faculty of Science, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Li-Na Han
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Phan Ke Lôc
- Department of Botany and HNU, Faculty of Biology, VNU Hanoi University of Science (HUS), Hanoi, Viet Nam
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| | | | - Brian Schrire
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Duan L, Yang X, Liu P, Johnson G, Wen J, Chang Z. A molecular phylogeny of Caraganeae (Leguminosae, Papilionoideae) reveals insights into new generic and infrageneric delimitations. PHYTOKEYS 2016; 70:111-137. [PMID: 27829801 PMCID: PMC5088706 DOI: 10.3897/phytokeys.70.9641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/25/2016] [Indexed: 05/22/2023]
Abstract
Based on sequence data of nuclear ITS and plastid matK, trnL-F and psbA-trnH markers, the phylogeny of the subtribes Caraganinae and Chesneyinae in tribe Caraganeae was inferred. The results support the monophyly of each of the subtribes. Within subtribes Caraganinae, Calophaca and Halimodendron are herein transferred into Caragana to ensure its generic monophyly. The subtribe Chesneyinae is composed of four well-supported genera: Chesneya, Chesniella, Gueldenstaedtia and Tibetia. Based on phylogenetic, morphological, distributional and habitat type evidence, the genus Chesneya was divided into three monophyletic sections: Chesneya sect. Chesneya, Chesneya sect. Pulvinatae and Chesneya sect. Spinosae. Chesneya macrantha is herein transferred into Chesniella. Spongiocarpella is polyphyletic and its generic rank is not maintained. The position of Chesneya was incongruent in the nuclear ITS and the plastid trees. A paternal chloroplast capture event via introgression is hypothesized for the origin of Chesneya, which is postulated to have involved the common ancestor of Chesniella (♂) and that of the Gueldenstaedtia - Tibetia (GUT) clade (♀) as the parents.
Collapse
Affiliation(s)
- Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, P.R.China
| | - Xue Yang
- Agriculture School, Kunming University, Kunming, Yunnan 650204, P.R.China
| | - Peiliang Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington DC, 20013-7012, U.S.A.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington DC, 20013-7012, U.S.A.
| | - Zhaoyang Chang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Wang DY, Zhang Q, Liu Y, Lin ZF, Zhang SX, Sun MX, Sodmergen. The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance. THE PLANT CELL 2010; 22:2402-16. [PMID: 20605854 PMCID: PMC2929101 DOI: 10.1105/tpc.109.071902] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 05/02/2023]
Abstract
The mechanisms that regulate mitochondrial inheritance are not yet clear, even though it is 100 years since the first description of non-Mendelian genetics. Here, we quantified the copy numbers of mitochondrial DNA (mtDNA) in the gametic cells of angiosperm species. We demonstrate that each egg cell from Arabidopsis thaliana, Antirrhinum majus, and Nicotiana tabacum possesses 59.0, 42.7, and 73.0 copies of mtDNA on average, respectively. These values are equivalent to those in Arabidopsis mesophyll cells, at 61.7 copies per cell. On the other hand, sperm or generative cells from Arabidopsis, A. majus, and N. tabacum possess minor amounts of mtDNA, at 0.083, 0.47, and 1 copy on average, respectively. We further reveal a 50-fold degradation of mtDNA during pollen development in A. majus. In contrast, markedly high levels of mtDNA are found in the male gametic cells of Cucumis melo and Pelargonium zonale (1296.3 and 256.7 copies, respectively). Our results provide direct evidence for mitochondrial genomic insufficiency in the eggs and somatic cells and indicate that a male gamete of an angiosperm may possess mtDNA at concentrations as high as 21-fold (C. melo) or as low as 0.1% (Arabidopsis) of the levels in somatic cells. These observations reveal the existence of a strong regulatory system for the male gametic mtDNA levels in angiosperms with regard to mitochondrial inheritance.
Collapse
Affiliation(s)
- Dan-Yang Wang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi-Fu Lin
- Department of Anatomy, Hangzhou Normal University, Hangzhou 310018, China
| | - Shao-Xiang Zhang
- Institute of Hepatobiliary Surgery, Third Military Medical University, Chongqing 400038, China
| | - Meng-Xiang Sun
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Hu Y, Zhang Q, Rao G. Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. PLANT & CELL PHYSIOLOGY 2008; 49:958-68. [PMID: 18448473 DOI: 10.1093/pcp/pcn069] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is widely held that organelles inherit from the maternal lineage. However, the plastid genome in quite a few angiosperms appears to be biparentally transmitted. It is unclear how and why biparental inheritance of the genome became activated. Here, we detected widespread occurrence of plastids in the sperm cells (a cellular prerequisite for biparental inheritance) of traditional Caprifoliaceae. Of the 12 genera sampled, the sperm cells of Abelia, Dipelta, Heptacodium, Kolkwitzia, Leycesteria, Linnaea, Lonicera, Symphoricarpos, Triosteum and Weigela possessed inheritable plastids. The other genera, Sambucus and Viburnum, lacked plastids in sperm cells. Interestingly, such exclusion of plastids in the sperm cells of some Caprifoliaceae appeared to be associated with the divergence of Dipsacales phylogeny. Closer examination of Weigela florida revealed that both plastids and plastid DNA were highly duplicated in the generative cells. This implies that the appearance of plastids in sperm cells involved cellular mechanisms. Because such mechanisms must enhance the strength of plastid transmission through the paternal lineage and appear ubiquitous in species exhibiting biparental or potential biparental plastid inheritance, we presume that biparental plastid genetics may be a derived trait in angiosperms. This is consistent with our extended phylogenetic analysis using species with recently discovered modes of potential plastid inheritance. The results show that basal and early angiosperms have maternal plastid transmission, whereas all potential biparental transmission occurs at terminal branches of the tree. Thus, unlike previous studies, we suggest that biparental plastid inheritance in angiosperms was unilaterally converted from the maternal transmission mode during late angiosperm evolution.
Collapse
Affiliation(s)
- Yingchun Hu
- Key Laboratory of Cell Proliferation and Differentiation (Ministry of Education), College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | |
Collapse
|
5
|
Matsushima R, Hu Y, Toyoda K, Sakamoto W. The model plant Medicago truncatula exhibits biparental plastid inheritance. PLANT & CELL PHYSIOLOGY 2008; 49:81-91. [PMID: 18065422 DOI: 10.1093/pcp/pcm170] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80% of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F(1) plants possessed ptDNAs from both parents. Interestingly, cotyledons of F(1) plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F(2) population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.
Collapse
Affiliation(s)
- Ryo Matsushima
- Research Institute for Bioresources, Kurashiki University, Kurashiki, Okayama, 710-0046 Japan
| | | | | | | |
Collapse
|
6
|
Trusty JL, Goertzen LR, Zipperer WC, Lockaby BG. Invasive Wisteria in the Southeastern United States: genetic diversity, hybridization and the role of urban centers. Urban Ecosyst 2007. [DOI: 10.1007/s11252-007-0030-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Trusty JL, Johnson KJ, Lockaby BG, Goertzen LR. Bi-parental cytoplasmic DNA inheritance in Wisteria (Fabaceae): evidence from a natural experiment. PLANT & CELL PHYSIOLOGY 2007; 48:662-5. [PMID: 17379697 DOI: 10.1093/pcp/pcm036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cytoplasmic inheritance was investigated in interspecific hybrids of Wisteria sinensis and W. floribunda. Species-specific nuclear, mitochondrial and plastid DNA markers were identified from wild-collected plants of each species in its native range. These markers provide evidence for the bi-parental transmission of plastids in hybrid swarms of these two species in the southeastern USA. These population level molecular data corroborate previous cytological evidence of this phenomenon in Wisteria.
Collapse
Affiliation(s)
- Jennifer L Trusty
- Center for Forest Sustainability, School of Forestry and Wildlife Sciences, 602 Duncan Drive, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|