1
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
2
|
Rongsawat T, Peltier JB, Boyer JC, Véry AA, Sentenac H. Looking for Root Hairs to Overcome Poor Soils. TRENDS IN PLANT SCIENCE 2021; 26:83-94. [PMID: 32980260 DOI: 10.1016/j.tplants.2020.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Breeding new cultivars allowing reduced fertilization and irrigation is a major challenge. International efforts towards this goal focus on noninvasive methodologies, platforms for high-throughput phenotyping of large plant populations, and quantitative description of root traits as predictors of crop performance in environments with limited water and nutrient availability. However, these high-throughput analyses ignore one crucial component of the root system: root hairs (RHs). Here, we review current knowledge on RH functions, mainly in the context of plant hydromineral nutrition, and take stock of quantitative genetics data pointing at correlations between RH traits and plant biomass production and yield components.
Collapse
Affiliation(s)
- Thanyakorn Rongsawat
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France.
| |
Collapse
|
3
|
Perroud PF, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K, Bassi R, Bonhomme S, Chen H, Coates JC, Fujita T, Guyon-Debast A, Lang D, Lin J, Lipzen A, Nogué F, Oliver MJ, Ponce de León I, Quatrano RS, Rameau C, Reiss B, Reski R, Ricca M, Saidi Y, Sun N, Szövényi P, Sreedasyam A, Grimwood J, Stacey G, Schmutz J, Rensing SA. The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:168-182. [PMID: 29681058 DOI: 10.1111/tpj.13940] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Alessandro Alboresi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mojgan Amirebrahimi
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Haodong Chen
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Daniel Lang
- Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Junyan Lin
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Melvin J Oliver
- USDA-ARS-MWA, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 652117, USA
| | - Inés Ponce de León
- Department of Molecular Biology, Clemente Estable Biological Research Institute, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Ralph S Quatrano
- Department of Biology, Washington University in St Louis, One Brookings Drive, St Louis, MO, 63130, USA
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Bernd Reiss
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Mariana Ricca
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ning Sun
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| |
Collapse
|
6
|
Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass ADM. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. THE NEW PHYTOLOGIST 2012; 194:724-731. [PMID: 22432443 DOI: 10.1111/j.1469-8137.2012.04094.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
• Interactions between the Arabidopsis NitRate Transporter (AtNRT2.1) and Nitrate Assimilation Related protein (AtNAR2.1, also known as AtNRT3.1) have been well documented, and confirmed by the demonstration that AtNRT2.1 and AtNAR2.1 form a 150-kDa plasma membrane complex, thought to constitute the high-affinity nitrate transporter of Arabidopsis thaliana roots. Here, we have investigated interactions between the remaining AtNRT2 family members (AtNRT2.2 to AtNRT2.7) and AtNAR2.1, and their capacity for nitrate transport. • Three different systems were used to examine possible interactions with AtNAR2.1: membrane yeast split-ubiquitin, bimolecular fluorescence complementation in A. thaliana protoplasts and nitrate uptake in Xenopus oocytes. • All NRT2s, except for AtNRT2.7, restored growth and β-galactosidase activity in the yeast split-ubiquitin system, and split-YFP fluorescence in A. thaliana protoplasts only when co-expressed with AtNAR2.1. Thus, except for AtNRT2.7, all other NRT2 transporters interact strongly with AtNAR2.1. • Co-injection into Xenopus oocytes of cRNA of all NRT2 genes together with cRNA of AtNAR2.1 resulted in statistically significant increases of uptake over and above that resulting from single cRNA injections.
Collapse
Affiliation(s)
- Zorica Kotur
- University of British Columbia, 6270 University Blvd, Vancouver, BC V6T1Z4, Canada
| | - Nenah Mackenzie
- University of Adelaide, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
| | - Sunita Ramesh
- University of Adelaide, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
| | - Stephen D Tyerman
- University of Adelaide, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
| | - Brent N Kaiser
- University of Adelaide, PRC, 2B Hartley Grove, Urrbrae, SA 5064, Australia
| | - Anthony D M Glass
- University of British Columbia, 6270 University Blvd, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|