1
|
Imamichi T, Kusumoto N, Aoyama H, Takamatsu S, Honda Y, Muraoka S, Hagiwara-Komoda Y, Chiba Y, Onouchi H, Yamashita Y, Naito S. Phylogeny-linked occurrence of ribosome stalling on the mRNAs of Arabidopsis unfolded protein response factor bZIP60 orthologs in divergent plant species. Nucleic Acids Res 2024; 52:4276-4294. [PMID: 38366760 PMCID: PMC11077094 DOI: 10.1093/nar/gkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.
Collapse
Affiliation(s)
- Tomoya Imamichi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nao Kusumoto
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haruka Aoyama
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seidai Takamatsu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yugo Honda
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shiori Muraoka
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Yukako Chiba
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Yamashita
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
2
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
3
|
Taninaka Y, Nakahara KS, Hagiwara-Komoda Y. Intracellular proliferation of clover yellow vein virus is unaffected by the recessive resistance gene cyv1 of Pisum sativum. Microbiol Immunol 2020; 64:76-82. [PMID: 31687790 DOI: 10.1111/1348-0421.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
The pea cyv1 gene is a yet-to-be-identified recessive resistance gene that inhibits the infection of clover yellow vein virus (ClYVV). Previous studies confirmed that the cell-to-cell movement of ClYVV is inhibited in cyv1-carrying pea plants; however, the effect of cyv1 on viral replication remains unknown. In this study, we developed a new pea protoplast transfection method to investigate ClYVV propagation at the single-cell level. Using this method, we revealed that ClYVV accumulates to similar levels in both ClYVV-susceptible and cyv1-carrying pea protoplasts. Thus, the cyv1-mediated resistance would not suppress intracellular ClYVV replication.
Collapse
Affiliation(s)
- Yosuke Taninaka
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
4
|
Chen L, Wang X, Wang L, Fang Y, Pan X, Gao X, Zhang W. Functional characterization of chloroplast transit peptide in the small subunit of Rubisco in maize. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:12-20. [PMID: 30999073 DOI: 10.1016/j.jplph.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Functions of domains or motifs, which are encoded by the transit peptide (TP) of the precursor of the small subunit of Rubisco (prSSU), have been investigated intensively in dicots. Functional characterization of the prSSU TP, however, is still understudied in maize. In this study, we found that the TP of maize prSSU1 did not function fully in chloroplast targeting in Arabidopsis or vice versa, indicating the divergent function of TPs in chloroplast targeting between maize and Arabidopsis. Through deletion or substitution assays, we found that the N-terminal region of maize or Arabidopsis prSSU1 was necessary and sufficient for importing specifically the fused-green fluorescent protein (GFP) into each corresponding chloroplast. Finally, we found that the first-five amino acids and MM motif in the N-terminal domain of the maize TP played an essential role in maize chloroplast targeting. Thus, our analyses demonstrate that the N-terminal domain of the prSSU1 TP is the key determinant in chloroplast targeting between maize and Arabidopsis. Our study highlights the unique properties of the maize prSSU1 TP in chloroplast targeting, thus helping to understand the role of N-terminal domain in chloroplast targeting across species. It will help to manipulate chloroplast transit peptides (cTPs) for crop bioengineering.
Collapse
Affiliation(s)
- Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Ximeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|