1
|
Padilla YG, Gisbert-Mullor R, Bueso E, Zhang L, Forment J, Lucini L, López-Galarza S, Calatayud Á. New Insights Into Short-term Water Stress Tolerance Through Transcriptomic and Metabolomic Analyses on Pepper Roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111731. [PMID: 37196901 DOI: 10.1016/j.plantsci.2023.111731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
In the current climate change scenario, water stress is a serious threat to limit crop growth and yields. It is necessary to develop tolerant plants that cope with water stress and, for this purpose, tolerance mechanisms should be studied. NIBER® is a proven water stress- and salt-tolerant pepper hybrid rootstock (Gisbert-Mullor et al., 2020; López-Serrano et al., 2020), but tolerance mechanisms remain unclear. In this experiment, NIBER® and A10 (a sensitive pepper accession (Penella et al., 2014)) response to short-term water stress at 5 h and 24 h was studied in terms of gene expression and metabolites content in roots. GO terms and gene expression analyses evidenced constitutive differences in the transcriptomic profile of NIBER® and A10, associated with detoxification systems of reactive oxygen species (ROS). Upon water stress, transcription factors like DREBs and MYC are upregulated and the levels of auxins, abscisic acid and jasmonic acid are increased in NIBER®. NIBER® tolerance mechanisms involve an increase in osmoprotectant sugars (i.e., trehalose, raffinose) and in antioxidants (spermidine), but lower contents of oxidized glutathione compared to A10, which indicates less oxidative damage. Moreover, the gene expression for aquaporins and chaperones is enhanced. These results show the main NIBER® strategies to overcome water stress.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain.
| |
Collapse
|
2
|
He F, Yang T, Zhang F, Jiang X, Li X, Long R, Wang X, Gao T, Wang C, Yang Q, Chen L, Kang J. Transcriptome and GWAS Analyses Reveal Candidate Gene for Root Traits of Alfalfa during Germination under Salt Stress. Int J Mol Sci 2023; 24:ijms24076271. [PMID: 37047244 PMCID: PMC10094355 DOI: 10.3390/ijms24076271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Alfalfa growth and production in China are negatively impacted by high salt concentrations in soils, especially in regions with limited water supplies. Few reliable genetic markers are currently available for salt tolerance selection. As a result, molecular breeding strategies targeting alfalfa are hindered. Therefore, with the continuous increase in soil salinity in agricultural lands, it is indispensable that a salt-tolerant variety of alfalfa is produced. We collected 220 alfalfa varieties around the world for resequencing and performed genome-wide association studies (GWASs). Alfalfa seeds were germinated in saline water with different concentrations of NaCl, and the phenotypic differences in several key root traits were recorded. In the phenotypic analysis, the breeding status and geographical origin strongly affected the salt tolerance of alfalfa. Forty-nine markers were significantly associated with salt tolerance, and 103 candidate genes were identified based on linkage disequilibrium. A total of 2712 differentially expressed genes were upregulated and 3570 were downregulated based on transcriptomic analyses. Some candidate genes that affected root development in the seed germination stage were identified through the combination of GWASs and transcriptome analyses. These genes could be used for molecular breeding strategies to increase alfalfa’s salt tolerance and for further research on salt tolerance in general.
Collapse
|
3
|
Sun K, Mehari TG, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan MK, Zhang J, Wang K, Wang B. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1092616. [PMID: 36875590 PMCID: PMC9978342 DOI: 10.3389/fpls.2023.1092616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 06/05/2023]
Abstract
Uncovering the underlying mechanism of salt tolerance is important to breed cotton varieties with improved salt tolerance. In this study, transcriptome and proteome sequencing were performed on upland cotton (Gossypium hirsutum L.) variety under salt stress, and integrated analysis was carried out to exploit salt-tolerance genes in cotton. Enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on differentially expressed genes (DEGs) obtained from transcriptome and proteome sequencing. GO enrichment was carried out mainly in the cell membrane, organelle, cellular process, metabolic process, and stress response. The expression of 23,981 genes was changed in physiological and biochemical processes such as cell metabolism. The metabolic pathways obtained by KEGG enrichment included glycerolipid metabolism, sesquiterpene and triterpenoid biosynthesis, flavonoid production, and plant hormone signal transduction. Combined transcriptome and proteome analysis to screen and annotate DEGs yielded 24 candidate genes with significant differential expression. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the candidate genes showed that two genes (Gh_D11G0978 and Gh_D10G0907) responded significantly to the induction of NaCl, and these two genes were further selected as target genes for gene cloning and functional validation through virus-induced gene silencing (VIGS). The silenced plants exhibited early wilting with a greater degree of salt damage under salt treatment. Moreover, they showed higher levels of reactive oxygen species (ROS) than the control. Therefore, we can infer that these two genes have a pivotal role in the response to salt stress in upland cotton. The findings in this research will facilitate the breeding of salt tolerance cotton varieties that can be grown on saline alkaline lands.
Collapse
Affiliation(s)
- Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongmei Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad K.R. Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Zhang Z, Chang X, Luo S, Wang Y, Xuan S, Zhao J, Shen S, Ma W, Chen X. Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus. Front Genet 2023; 14:1164730. [PMID: 37152997 PMCID: PMC10156976 DOI: 10.3389/fgene.2023.1164730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Pepper mild mottle virus (PMMoV) poses a significant threat to pepper production because it is highly contagious and extremely persistent in soil. Despite this threat, little is known about the molecular processes that underlie plant responses to pepper mild mottle virus. Here, we performed RNA sequencing of tolerant ("17-p63") and susceptible ("16-217") pepper genotypes after pepper mild mottle virus or mock inoculation. Viral accumulation in systemic leaves was lower in the pepper mild mottle virus-resistant 17-p63 genotype than in the pepper mild mottle virus-sensitive 16-217 genotype, and infection symptoms were more apparent in systemic leaves of 16-217 than in those of 17-p63 at the same timepoints during the infection process. We identified 2,959 and 2,159 differentially expressed genes (DEGs) in systemic leaves of infected 16-217 and 17-p63, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes from both genotypes revealed significant enrichment of the MAPK signaling pathway, plant-pathogen interaction, and flavonoid biosynthesis. A number of differentially expressed genes showed opposite trends in relation to stress resistance and disease defense in the two genotypes. We also performed weighted gene co-expression network analysis (WGCNA) of all samples and identified modules associated with resistance to pepper mild mottle virus, as well as seven hub genes. These results identify candidate virus resistance genes and provide insight into pepper defense mechanisms against pepper mild mottle virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Ma
- *Correspondence: Xueping Chen, ; Wei Ma,
| | | |
Collapse
|
5
|
Yang G, Pan W, Cao R, Guo Q, Cheng Y, Zhao Q, Cui L, Nie X. Multi-omics reveals the key and specific miRNA-mRNA modules underlying salt tolerance in wild emmer wheat (Triticum dicoccoides L.). BMC Genomics 2022; 23:724. [PMID: 36284277 PMCID: PMC9597961 DOI: 10.1186/s12864-022-08945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Salt stress is one of the most destructive environmental factors limiting crop growth and development. MicroRNAs (miRNAs) are a class of conserved endogenous small non-coding RNAs, playing the crucial role in regulating salt response and tolerance in plants. However, the miRNAs in wild emmer wheat, especially the key and specific salt-responsive miRNAs are not well studied. Results Here, we performed small RNA, transcriptome, and degradome sequencing of both of salt-tolerance (ST) and salt-sensitive (SS) wild emmer genotypes to identify the miRNA-mRNA modules associating with salt tolerance. Totally, 775 miRNAs, including 361 conserved known miRNAs and 414 novel miRNAs were detected. Differential expression analysis identified 93 salt-responsive miRNAs under salt stress. Combined with RNA-seq and degradome sequencing analysis, 224 miRNA-mRNA modules displayed the complete opposite expression trends between ST and SS genotypes, most of which functionally enriched into ROS homeostasis maintaining, osmotic pressure modulating, and root growth and development. Finally, the qRT-PCR and a large-scale yeast functional screening were also performed to initially validate the expression pattern and function of candidate genes. Conclusions This study reported the key and specific miRNA-mRNA modules associated with salt tolerance in wild emmer, which lay the foundation for improving the salt tolerance in cultivated emmer and bread wheat through miRNA engineering approach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08945-3.
Collapse
Affiliation(s)
- Guang Yang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wenqiu Pan
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Rui Cao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qifan Guo
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yue Cheng
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qinlong Zhao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Licao Cui
- grid.411859.00000 0004 1808 3238College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
6
|
Abid M, Gu S, Zhang YJ, Sun S, Li Z, Bai DF, Sun L, Qi XJ, Zhong YP, Fang JB. Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). HORTICULTURE RESEARCH 2022; 9:uhac189. [PMID: 36338850 PMCID: PMC9630968 DOI: 10.1093/hr/uhac189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 05/25/2023]
Abstract
The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shichao Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong-Jie Zhang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhi Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dan-Feng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiu-Juan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jin-Bao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
7
|
Jaballi A, Missihoun TD. The phytohormone abscisic acid modulates protein carbonylation in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13658. [PMID: 35243640 DOI: 10.1111/ppl.13658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Protein carbonylation is a post-translational modification associated with the reactive oxygen species. It results from the direct oxidation of the side chains of Lys, Arg, Pro, and Thr residues by hydroxyl radical HO• or the addition of reactive carbonyl species including α,β-unsaturated aldehydes and oxylipins to the side chain of Cys, His, and Lys. Recent findings indicated that the phytohormone abscisic acid (ABA) induces the production of α,β-unsaturated aldehydes that modulate the effect of ABA on stomatal closure. This indicated that α,β-unsaturated aldehydes might mediate ABA signaling. In this study, we investigated the ABA-induced protein carbonylation events by profiling the carbonylated proteome extracted from Arabidopsis thaliana leaves after ABA treatment. The carbonylated proteins were enriched by affinity chromatography and subjected to liquid chromatography-tandem mass spectrometry. We identified 180 carbonylated proteins. Of these, 26 proteins became carbonylated upon ABA treatment, whereas 163 proteins that were carbonylated in untreated samples were no longer detected in the ABA-treated samples, which points to dynamic control of protein carbonylation by ABA in A. thaliana. A few regulatory stress-related proteins and enzymes involved in the biosynthesis of the aspartate family of amino acids were overrepresented in the list of proteins, which the carbonylation status changed between untreated and ABA-treated samples. These results indicated that ABA triggers a change in the pattern of protein carbonylation in A. thaliana. This change is independent of the commonly seen increased levels of carbonylated proteins in the plants subjected to deadly stress conditions.
Collapse
Affiliation(s)
- Amal Jaballi
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
8
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
11
|
Jacques F, Zhao Y, Kopečná M, Končitíková R, Kopečný D, Rippa S, Perrin Y. Roles for ALDH10 enzymes in γ-butyrobetaine synthesis, seed development, germination, and salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7088-7102. [PMID: 32845293 DOI: 10.1093/jxb/eraa394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Plant genomes generally contain two aldehyde dehydrogenase 10 (ALDH10) genes, which encode NAD+-dependent enzymes. These oxidize various aminoaldehydes that are produced by the catabolism of amino acids and polyamines. ALDH10s are closely related to the animal and fungal trimethylaminobutyraldehyde dehydrogenases (TMABADHs) that are involved in the synthesis of γ-butyrobetaine, the precursor of carnitine. Here, we explore the ability of the Arabidopsis thaliana proteins AtALDH10A8 and AtALDH10A9 to oxidize aminoaldehydes. We demonstrate that these enzymes display high TMABADH activities in vitro. Moreover, they can complement the Candida albicans tmabadhΔ/Δ null mutant. These findings illustrate the link between AtALDH10A8 and AtALDH10A9 and γ-butyrobetaine synthesis. An analysis of single and double knockout Arabidopsis mutant lines revealed that the double mutants had reduced γ-butyrobetaine levels. However, there were no changes in the carnitine contents of these mutants. The double mutants were more sensitive to salt stress. In addition, the siliques of the double mutants had a significant proportion of seeds that failed to mature. The mature seeds contained higher amounts of triacylglycerol, facilitating accelerated germination. Taken together, these results show that ALDH10 enzymes are involved in γ-butyrobetaine synthesis. Furthermore, γ-butyrobetaine fulfils a range of physiological roles in addition to those related to carnitine biosynthesis.
Collapse
Affiliation(s)
- Florian Jacques
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yingjuan Zhao
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
- Department of Applied Chemistry, School of Science, Xi'an University of Technology, Xi'an, China
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Sonia Rippa
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yolande Perrin
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| |
Collapse
|
12
|
Peng JC, Ma XG, Wang YH, Sun H. New insights into the evolutionary history of Megacodon: Evidence from a newly discovered species. PLANT DIVERSITY 2020; 42:198-208. [PMID: 32695953 PMCID: PMC7361429 DOI: 10.1016/j.pld.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Megacodon is an ideal genus to study speciation and ecological adaptation in the Sino-Himalayan region. The genus contains two species distributed at different elevations and in two separate areas. However, studies of this genus have long been impeded by a lack of fieldwork on one of its species, Megacodon venosus. In this study, we collected specimens of two Megacodon species and found an extraordinary new species of Megacodon in Lushui county of north-west Yunnan province, which we have since named Megacodon lushuiensis. We propose new species based on both morphological and molecular evidence. The finding of this new species emphasized the importance of ecological divergence in the divergence of Megacodon stylophorus and its parapatric low-elevation Megacodon species. To identify genetic determinants that underlie adaptations to different elevations, we characterized transcriptomes of the new species M. lushuiensis, which is distributed at low elevations, and M. stylophorus, which is distributed at high elevations. Comparative transcriptome analysis identified 8926 orthogroups containing single-copy genes, and 370 orthogroups containing significantly positively selected genes. The set of positively selected genes was enriched into 25 Gene Ontology terms, including "response to water deprivation", "response to osmotic stress", and "cellular response to external stimulus". Our results provide new insights into how ecological adaptation and speciation occurred in Megacodon and highlight the role of heterogeneous habitats in the speciation of plants in the Sino-Himalayan region.
Collapse
Affiliation(s)
- Jun-Chu Peng
- School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yue-Hua Wang
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Oney-Birol S. Exogenous L-Carnitine Promotes Plant Growth and Cell Division by Mitigating Genotoxic Damage of Salt Stress. Sci Rep 2019; 9:17229. [PMID: 31754247 PMCID: PMC6872569 DOI: 10.1038/s41598-019-53542-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
L-carnitine is a fundamental ammonium compound responsible for energy metabolism in all living organisms. It is an oxidative stress regulator, especially in bacteria and yeast and lipid metabolism in plants. Besides its metabolic functions, l-carnitine has detoxification and antioxidant roles in the cells. Due to the complex interrelationship of l-carnitine between lipid metabolism and salinity dependent oxidative stress, this study investigates the exogenous l-carnitine (1 mM) function on seed germination, cell division and chromosome behaviour in barley seeds (Hordeum vulgare L. cv. Bulbul-89) under different salt stress concentrations (0, 0.25, 0.30 and 0.35 M). The present work showed that l-carnitine pretreatment could not be successful to stimulate cell division on barley seeds under non-stressed conditions compared to stressed conditions. Depending on increasing salinity without pretreatment with l-carnitine, the mitotic index significantly decreased in barley seeds. Pretreatment of barley seeds with l-carnitine under salt stress conditions was found promising as a plant growth promoter and stimulator of mitosis. In addition, pretreatment of barley seeds with l-carnitine alleviated detrimental effects of salt stress on chromosome structure and it protected cells from the genotoxic effects of salt. This may be caused by the antioxidant and protective action of the l-carnitine. Consequently, this study demonstrated that the exogenous application of 1 mM l-carnitine mitigates the harmful effects of salt stress by increasing mitosis and decreasing DNA damage caused by oxidative stress on barley seedlings.
Collapse
Affiliation(s)
- Signem Oney-Birol
- Department of Molecular Biology & Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Turkey.
| |
Collapse
|
14
|
Santiago JP, Sharkey TD. Pollen development at high temperature and role of carbon and nitrogen metabolites. PLANT, CELL & ENVIRONMENT 2019; 42:2759-2775. [PMID: 31077385 DOI: 10.1111/pce.13576] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 05/11/2023]
Abstract
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high-temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high-temperature stress causes morpho-anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high-temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.
Collapse
Affiliation(s)
- James P Santiago
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| | - Thomas D Sharkey
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
15
|
Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Sci Rep 2019; 9:12661. [PMID: 31477771 PMCID: PMC6718394 DOI: 10.1038/s41598-019-49083-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
Cassava (Manihot esculenta) is a major staple food, animal feed and energy crop in the tropics and subtropics. It is one of the most drought-tolerant crops, however, the mechanisms of cassava drought tolerance remain unclear. Abscisic acid (ABA)-responsive element (ABRE)-binding factors (ABFs) are transcription factors that regulate expression of target genes involved in plant tolerance to drought, high salinity, and osmotic stress by binding ABRE cis-elements in the promoter regions of these genes. However, there is little information about ABF genes in cassava. A comprehensive analysis of Manihot esculenta ABFs (MeABFs) described the phylogeny, genome location, cis-acting elements, expression profiles, and regulatory relationship between these factors and Manihot esculenta betaine aldehyde dehydrogenase genes (MeBADHs). Here we conducted genome-wide searches and subsequent molecular cloning to identify seven MeABFs that are distributed unevenly across six chromosomes in cassava. These MeABFs can be clustered into three groups according to their phylogenetic relationships to their Arabidopsis (Arabidopsis thaliana) counterparts. Analysis of the 5′-upstream region of MeABFs revealed putative cis-acting elements related to hormone signaling, stress, light, and circadian clock. MeABF expression profiles displayed clear differences among leaf, stem, root, and tuberous root tissues under non-stress and drought, osmotic, or salt stress conditions. Drought stress in cassava leaves and roots, osmotic stress in tuberous roots, and salt stress in stems induced expression of the highest number of MeABFs showing significantly elevated expression. The glycine betaine (GB) content of cassava leaves also was elevated after drought, osmotic, or salt stress treatments. BADH1 is involved in GB synthesis. We show that MeBADH1 promoter sequences contained ABREs and that MeBADH1 expression correlated with MeABF expression profiles in cassava leaves after the three stress treatments. Taken together, these results suggest that in response to various dehydration stresses, MeABFs in cassava may activate transcriptional expression of MeBADH1 by binding the MeBADH1 promoter that in turn promotes GB biosynthesis and accumulation via an increase in MeBADH1 gene expression levels and MeBADH1 enzymatic activity. These responses protect cells against dehydration stresses by preserving an osmotic balance that enhances cassava tolerance to dehydration stresses.
Collapse
|
16
|
Aslam M, Fakher B, Anandhan S, Pande V, Ahmed Z, Qin Y. Ectopic Expression of Cold Responsive LlaCIPK Gene Enhances Cold Stress Tolerance in Nicotiana tabacum. Genes (Basel) 2019; 10:E446. [PMID: 31212842 PMCID: PMC6627969 DOI: 10.3390/genes10060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Low-temperature stress severely affects the growth, development, and geographical distribution of various crop plants, resulting in significant economic loss to producers. In a quest to identify cold-regulated genes, we constructed a cDNA suppression subtractive library from a high altitude adapted ecotype of Lepidium. We cloned a cold-induced gene LlaCIPK from the subtracted cDNA library which gave homology to Arabidopsis CIPK15 gene. The predicted 3D structure of LlaCIPK protein also showed homology with Arabidopsis CIPK protein. Quantitative real-time PCR analysis in Lepidium seedlings exposed to 6 h of cold stress shows a 3-fold increase in the expression of LlaCIPK transcript. The expression of LlaCIPK was also differentially regulated by ethylene, CaCl2, ABA, and SA treatments. Ethylene and CaCl2 treatments up regulated LlaCIPK expression, whereas ABA and SA treatments down regulated the LlaCIPK expression. Transgenic plants overexpressing LlaCIPK gene under constitutive promoter show an increased level of proline and cell membrane stability. Taken together, our results suggest that the LlaCIPK contributes to the cold-response pathway in Lepidium plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Beenish Fakher
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | - Veena Pande
- Department of Biotechnology, Kumaon University Bhimtal Campus, Bhimtal 263136, India.
| | - Zakwan Ahmed
- Defence Institute of Bio-Energy Research, Goraparao, Haldwani 263139, India.
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Jacques F, Rippa S, Perrin Y. Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:432-440. [PMID: 30080631 DOI: 10.1016/j.plantsci.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 05/24/2023]
Abstract
L-carnitine is present in all living kingdoms where it acts in diverse physiological processes. It is involved in lipid metabolism in animals and yeasts, notably as an essential cofactor of fatty acid intracellular trafficking. Its physiological significance is poorly understood in plants, but L-carnitine may be linked to fatty acid metabolism among other roles. Indeed, carnitine transferases activities and acylcarnitines are measured in plant tissues. Current knowledge of fatty acid trafficking in plants rules out acylcarnitines as intermediates of the peroxisomal and mitochondrial fatty acid metabolism, unlike in animals and yeasts. Instead, acylcarnitines could be involved in plastidial exportation of de novo fatty acid, or importation of fatty acids into the ER, for synthesis of specific glycerolipids. L-carnitine also contributes to cellular maintenance though antioxidant and osmolyte properties in animals and microbes. Recent data indicate similar features in plants, together with modulation of signaling pathways. The biosynthesis of L-carnitine in the plant cell shares similar precursors as in the animal and yeast cells. The elucidation of the biosynthesis pathway of L-carnitine, and the identification of the enzymes involved, is today essential to progress further in the comprehension of its biological significance in plants.
Collapse
Affiliation(s)
- Florian Jacques
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Sonia Rippa
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Yolande Perrin
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
18
|
Missihoun TD, Kotchoni SO, Bartels D. Aldehyde Dehydrogenases Function in the Homeostasis of Pyridine Nucleotides in Arabidopsis thaliana. Sci Rep 2018; 8:2936. [PMID: 29440669 PMCID: PMC5811564 DOI: 10.1038/s41598-018-21202-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 01/03/2023] Open
Abstract
Aldehyde dehydrogenase enzymes (ALDHs) catalyze the oxidation of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD+ or NADP+ as cofactors and generating NADH or NADPH. Previous studies mainly focused on the ALDH role in detoxifying toxic aldehydes but their effect on the cellular NAD(P)H contents has so far been overlooked. Here, we investigated whether the ALDHs influence the cellular redox homeostasis. We used a double T-DNA insertion mutant that is defective in representative members of Arabidopsis thaliana ALDH families 3 (ALDH3I1) and 7 (ALDH7B4), and we examined the pyridine nucleotide pools, glutathione content, and the photosynthetic capacity of the aldh mutants in comparison with the wild type. The loss of function of ALDH3I1 and ALDH7B4 led to a decrease of NAD(P)H, NAD(P)H/NAD(P) ratio, and an alteration of the glutathione pools. The aldh double mutant had higher glucose-6-phosphate dehydrogenase activity than the wild type, indicating a high demand for reduced pyridine nucleotides. Moreover, the mutant had a reduced quantum yield of photosystem II and photosynthetic capacity at relatively high light intensities compared to the wild type. Altogether, our data revealed a role of ALDHs as major contributors to the homeostasis of pyridine nucleotides in plants.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115, Bonn, Germany. .,Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92521, USA.
| | - Simeon O Kotchoni
- Department of Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
19
|
Tagnon MD, Simeon KO. Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1387707. [PMID: 28990846 PMCID: PMC5703241 DOI: 10.1080/15592324.2017.1387707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 05/29/2023]
Abstract
Aldehyde molecules were shown to induce gene expression but because of their toxicity, the cell expresses ALDEHYDE DEHYDROGENASES (ALDH, EC 1.2.1.3) that oxidize them to carboxylic acids. To understand how the aldehydes may be both toxic and gene activators, we expressed the ALDH7B4 gene promoter fused to the β-glucuronidase reporter gene in independent transgenic lines and found that pentanal and trans-2-hexenal activated the promoter whereas trans-2-hexenal induced the ALDH7B4 protein. Paraquat led to higher amounts of malondialdehyde compared to trans-2-hexenal and H2O2, and only the treatment by Paraquat activated the ALDH7B4 promoter, indicating that a threshold level of aldehydes is required for gene activation. These findings suggest that ALDH activity may also serve to fine-tune gene activation by the aldehydes.
Collapse
Affiliation(s)
| | - Kotchoni O. Simeon
- Department of Biology, Rutgers University, Camden, NJ, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
20
|
Pan WJ, Tao JJ, Cheng T, Shen M, Ma JB, Zhang WK, Lin Q, Ma B, Chen SY, Zhang JS. Soybean NIMA-Related Kinase1 Promotes Plant Growth and Improves Salt and Cold Tolerance. PLANT & CELL PHYSIOLOGY 2017; 58:1268-1278. [PMID: 28444301 DOI: 10.1093/pcp/pcx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
NEK (NIMA-related kinase) is known as a family of serine/threonine kinases which mainly participate in microtubule-related mitotic events in fungi, mammals and other eukaryotes. Our previous studies found that Arabidopsis NEK6 plays an important role in plant response to abiotic stress. We further investigated roles of the NEK family in soybean and found that at least eight members can respond to abiotic stresses. Among them, only GmNEK1, a novel NEK member which is distantly related to Arabidopsis NEK6, enhanced plant growth and promoted salt and cold tolerance in transgenic Arabidopsis plants. The growth of soybean plants harboring GmNEK1-overexpressing hairy roots under saline condition was also improved. A series of stress-related genes including RH3, CORI3 and ALDH10A8 were found to be up-regulated in GmNEK1-overexpressing Arabidopsis plants and soybean hairy roots. Moreover, soybean plants with GmRH3-overexpressing hairy roots exhibited increased salt tolerance, while soybean plants with GmRH3-RNAi (RNA interference) roots were more sensitive to salt stress than the wild-type plants. Our study uncovers a novel role for GmNEK1 in promoting plant adaptive growth under adverse conditions at least partially through up-regulation of GmRH3. Manipulation of these genes in soybean or other crops may improve growth and production under stress conditions.
Collapse
Affiliation(s)
- Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qin Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep 2016; 6:35115. [PMID: 27725774 PMCID: PMC5057122 DOI: 10.1038/srep35115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Collapse
|