1
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
2
|
Pouchon C, Boyer F, Roquet C, Denoeud F, Chave J, Coissac E, Alsos IG, Lavergne S. ORTHOSKIM: in silico sequence capture from genomic and transcriptomic libraries for phylogenomic and barcoding applications. Mol Ecol Resour 2022; 22:2018-2037. [PMID: 35015377 DOI: 10.1111/1755-0998.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in non-model organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: 1) global sequence assembly, 2) mapping against reference sequences, and 3) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and non-coding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g. ultra-conserved elements) or collections of single-copy ortholog genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and 4 RNAseq libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 license and is available at: https://github.com/cpouchon/ORTHOSKIM.
Collapse
Affiliation(s)
- Charles Pouchon
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Cristina Roquet
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France.,Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057, Evry, France
| | - Jérome Chave
- Laboratoire Évolution et Diversité Biologique (EDB), UMR CNRS-IRD-UPS 5174, 31062, Toulouse Cedex, France
| | - Eric Coissac
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway
| | | | | | - Sébastien Lavergne
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| |
Collapse
|
3
|
Zhai Y, Yu X, Zhou J, Li J, Tian Z, Wang P, Meng Y, Zhao Q, Lou Q, Du S, Chen J. Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis. Genome 2021; 64:627-638. [PMID: 33460340 DOI: 10.1139/gen-2020-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.
Collapse
Affiliation(s)
- Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ya Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| |
Collapse
|
4
|
Wu CS, Sudianto E, Chiu HL, Chao CP, Chaw SM. Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data. FRONTIERS IN PLANT SCIENCE 2021; 12:713216. [PMID: 34456952 PMCID: PMC8385209 DOI: 10.3389/fpls.2021.713216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/16/2021] [Indexed: 05/10/2023]
Abstract
Bananas (Musa spp.) are some of the most important fruit crops in the world, contributing up to US$10 billion in export values annually. In this study, we use high-throughput sequencing to obtain genomic resources of high-copy DNA molecules in bananas. We sampled 13 wild species and eight cultivars that represent the three genera (Ensete, Musa, and Musella) of the banana family (Musaceae). Their plastomic, 45S rDNA, and mitochondrial scaffolds were recovered from genome skimming data. Two major clades (Clades I & II) within Musa are strongly supported by the three genomic compartment data. We document, for the first time, that the plastomes of Musaceae have expanded inverted repeats (IR) after they diverged from their two close relatives, Heliconiaceae (the lobster-claws) and Strelitziaceae (the traveler's bananas). The presence/absence of rps19 within IR regions reinforces the two intra-generic clades within Musa. Our comparisons of the bananas' plastomic and mitochondrial DNA sequence trees aid in identifying hybrid bananas' parentage. As the mitochondrial genes of Musa have elevated substitution rates, paternal inheritance likely plays an influential role on the Musa mitogenome evolution. We propose genome skimming as a useful method for reliable genealogy tracing and phylogenetics in bananas.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Edi Sudianto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Lung Chiu
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | | | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Shu-Miaw Chaw
| |
Collapse
|
5
|
Zhai Y, Yu X, Zhu Z, Wang P, Meng Y, Zhao Q, Li J, Chen J. Nuclear-Cytoplasmic Coevolution Analysis of RuBisCO in Synthesized Cucumis Allopolyploid. Genes (Basel) 2019; 10:genes10110869. [PMID: 31671713 PMCID: PMC6895982 DOI: 10.3390/genes10110869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Allopolyploids are often faced with the challenge of maintaining well-coordination between nuclear and cytoplasmic genes inherited from different species. The synthetic allotetraploid Cucumis × hytivus is a useful model to explore cytonuclear coevolution. In this study, the sequences and expression of cytonuclear enzyme complex RuBisCO as well as its content and activity in C. × hytivus were compared to its parents to explore plastid–nuclear coevolution. The plastome-coded rbcL gene sequence was confirmed to be stable maternal inheritance, and parental copy of nuclear rbcS genes were both preserved in C. × hytivus. Thus, the maternal plastid may interact with the biparentally inherited rbcS alleles. The expression of the rbcS gene of C-homoeologs (paternal) was significantly higher than that of H-homoeologs (maternal) in C. × hytivus (HHCC). Protein interaction prediction analysis showed that the rbcL protein has stronger binding affinity to the paternal copy of rbcS protein than that of maternal copy in C. × hytivus, which might explain the transcriptional bias of the rbcS homoeologs. Moreover, both the activity and content of RuBisCO in C. × hytivus showed mid-parent heterosis. In summary, our results indicate a paternal transcriptional bias of the rbcS genes in C. × hytivus, and we found new nuclear–cytoplasmic combination may be one of the reasons for allopolyploids heterosis.
Collapse
Affiliation(s)
- Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zaobing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ya Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|