1
|
Jiang H, Li X, Zhang C, Gao M, Wang Y, Wang J, Chai Q, Zheng Y, Wang X, Li Q, Li Y, Wang J, Zhao J. Genetic mapping and transcriptome profiling revealed leaf lobe formation and leaf size are regulated by GhRl 4 in Gossypium hirsutum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:53. [PMID: 39992448 DOI: 10.1007/s00122-025-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Leaf shape determines canopy structure and cotton productivity. Except for the L-D1 locus, which determine the okra-leaf shape, the genetic control of other leaf shapes remains unknown in cotton. In the current study, using BSA-seq, RNA-seq, and molecular methods, GhRl4 was mapped to chromosome A01, and it was identified as a key regulator of round-leaf shape in the cotton accession (M113116). Transcriptional suppression of GhRl4 by virus-induced gene silencing (VIGS) led to the formation of leaf lobes and enlarged leaf size. Compared to the wild-type, the coding sequence of round-leaf alleles of GhRl4 had a 21 bp deletion at the potential target site of miR319c. GhRl4 belongs to the TCP (TEOSINTE BRANCHED1, CYCLODEA, and PROLIFERATING CELL FACTOR) 4 subfamily, previously implicated in the regulation of leaf shape in model plants. Further, transcriptome analysis indicated that PILS (PIN-LIKES), GIF (GRF-INTERACTING FACTOR), WIP (WIP DOMAIN PROTEIN), CUC (CUP-SHAPED COTYLEDON), and TCP family genes might be involved in the development of the round-leaf. Identifying the genetic and biochemical basis of phenotypic variation for leaf shape diversity would enable the use of genetic diversity and genomic tools for development of climate resilient high yielding cotton cultivars.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Xue Li
- Agricultural Science and Technology Extension Center of Xiajin, Xiajin, 253200, People's Republic of China
| | - Chao Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Mingwei Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Yongcui Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Jian Wang
- Agricultural Science and Technology Extension Center of Xiajin, Xiajin, 253200, People's Republic of China
| | - Qichao Chai
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Yueying Zheng
- Agricultural Science and Technology Extension Center of Xiajin, Xiajin, 253200, People's Republic of China
| | - Xiuli Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Qingsuo Li
- Agricultural Science and Technology Extension Center of Xiajin, Xiajin, 253200, People's Republic of China
| | - Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Jiabao Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
| |
Collapse
|
2
|
Nishihara M, Hirabuchi A, Teshima T, Uesugi S, Takahashi H. Flower color modification in Torenia fournieri by genetic engineering of betacyanin pigments. BMC PLANT BIOLOGY 2024; 24:614. [PMID: 38937670 PMCID: PMC11210153 DOI: 10.1186/s12870-024-05284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet." Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan.
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan.
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Takuya Teshima
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Shota Uesugi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
- Department of Agriculture, School of Agriculture, Tokai University, 871-12 Sugidou, Mashikimach, Kamimashiki-gun, Kumamoto, 861-2205, Japan
| |
Collapse
|
3
|
Zhang B, Qin X, Han Y, Li M, Guo Y. Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3401-3411. [PMID: 38492236 DOI: 10.1093/jxb/erae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Vein-associated pigmentation (venation) is a type of floral coloration adopted by plants to attract pollinators. Several petunia (Petunia hybrida) lines generate dorsoventrally asymmetric venation patterning of the corolla tube, in which venation is only present in the dorsal tube. The molecular mechanism underlying this trait is unknown. Here, we demonstrate that miR319 is preferentially expressed in the dorsal corolla tube, leading to dorsoventrally asymmetric expression of its target genes. Transgenic lines overexpressing phy-miR319a generated uniform venation patterning of the corolla tube. Knockout of TCP genes targeted by miR319 promoted venation patterning in the ventral and dorsal tube, while overexpression of the miR319 target gene, PhTCP6, completely inhibited corolla tube venation patterning. In addition, miR319-targeted TCPs negatively regulated venation patterning, probably by repressing the regulator of venation patterning, AN4. Together, our data demonstrate that asymmetric expression of miR319 promotes venation patterning in the petunia dorsal tube alone by repressing the expression of its target TCP genes, which negatively regulate corolla tube venation patterning. These findings provide novel insights into how the dorsoventrally asymmetric distribution of venation patterning is established in zygomorphic flowers.
Collapse
Affiliation(s)
- Bin Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
- College of Agriculture, Guizhou University, 550025 Guiyang, Guizhou, China
| | - Xiaoting Qin
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Yao Han
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China
| |
Collapse
|
4
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Fu X, Shan H, Yao X, Cheng J, Jiang Y, Yin X, Kong H. Petal development and elaboration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3308-3318. [PMID: 35275176 DOI: 10.1093/jxb/erac092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Petals can be simple or elaborate, depending on whether they have complex basic structures and/or highly specialized epidermal modifications. It has been proposed that the independent origin and diversification of elaborate petals have promoted plant-animal interactions and, therefore, the evolutionary radiation of corresponding plant groups. Recent advances in floral development and evolution have greatly improved our understanding of the processes, patterns, and mechanisms underlying petal elaboration. In this review, we compare the developmental processes of simple and elaborate petals, concluding that elaborate petals can be achieved through four main paths of modifications (i.e. marginal elaboration, ventral elaboration, dorsal elaboration, and surface elaboration). Although different types of elaborate petals were formed through different types of modifications, they are all results of changes in the expression patterns of genes involved in organ polarity establishment and/or the proliferation, expansion, and differentiation of cells. The deployment of existing genetic materials to perform a new function was also shown to be a key to making elaborate petals during evolution.
Collapse
Affiliation(s)
- Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Maeda S, Sasaki K, Kaku H, Kanda Y, Ohtsubo N, Mori M. Overexpression of Rice BSR2 Confers Disease Resistance and Induces Enlarged Flowers in Torenia fournieri Lind. Int J Mol Sci 2022; 23:ijms23094735. [PMID: 35563126 PMCID: PMC9102792 DOI: 10.3390/ijms23094735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Plant pathogens evade basal defense systems and attack different organs and tissues of plants. Genetic engineering of plants with genes that confer resistance against pathogens is very effective in pathogen control. Conventional breeding for disease resistance in ornamental crops is difficult and lagging relative to that in non-ornamental crops due to an inadequate number of disease-resistant genes. Therefore, genetic engineering of these plants with defense-conferring genes is a practical approach. We used rice BSR2 encoding CYP78A15 for developing transgenic Torenia fournieri Lind. lines. The overexpression of BSR2 conferred resistance against two devastating fungal pathogens, Rhizoctonia solani and Botrytis cinerea. In addition, BSR2 overexpression resulted in enlarged flowers with enlarged floral organs. Histological observation of the petal cells suggested that the enlargement in the floral organs could be due to the elongation and expansion of the cells. Therefore, the overexpression of BSR2 confers broad-spectrum disease resistance and induces the production of enlarged flowers simultaneously. Therefore, this could be an effective strategy for developing ornamental crops that are disease-resistant and economically more valuable.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NIAS), Tsukuba 305-8602, Japan; (S.M.); (H.K.); (Y.K.)
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NIVFS), Tsukuba 305-0852, Japan; (K.S.); (N.O.)
| | - Hisatoshi Kaku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NIAS), Tsukuba 305-8602, Japan; (S.M.); (H.K.); (Y.K.)
- JICA Tsukuba Center, Tsukuba 305-0074, Japan
| | - Yasukazu Kanda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NIAS), Tsukuba 305-8602, Japan; (S.M.); (H.K.); (Y.K.)
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NIVFS), Tsukuba 305-0852, Japan; (K.S.); (N.O.)
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NIAS), Tsukuba 305-8602, Japan; (S.M.); (H.K.); (Y.K.)
- Correspondence: ; Tel.: +81-29-838-7008
| |
Collapse
|
7
|
Sekiguchi N, Sasaki K, Oshima Y, Mitsuda N. Ectopic expression of AtNF-YA6-VP16 in petals results in a novel petal phenotype in Torenia fournieri. PLANTA 2022; 255:105. [PMID: 35429252 DOI: 10.1007/s00425-022-03876-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
A novel Torenia phenotype having separate petals was obtained by the combination of NF-YA6-VP16 with a floral organ-specific promoter. Genetic engineering techniques helped in obtaining novel flower colors and shapes, in particular, by introducing functionally modified transcription factors (TFs) to ornamental flower species. Herein, we used functionally modified Arabidopsis TFs fused with the repression domain SRDX and the activation domain VP16 to screen for novel floral traits in Torenia fournieri Lind (torenia). We avoided undesired phenotypes unrelated to flowers by expressing these TFs through a floral organ-specific promoter belonging to the class-B genes, GLOBOSA (TfGLO). Fourteen constructs were produced to express functionally modified Arabidopsis TFs in which each of SRDX and VP16 was fused into 7 TFs that were used for the collective transformation of Torenia plants. Among the obtained transgenic plants, phenotypes with novel floral traits reflected in separate petals within normally gamopetalous flower lines. Sequencing analysis revealed that the transgenic plants contained nuclear factor-YA6 (NF-YA6) fused with the VP16. In the margin between the lips of the petals and tube in the TfGLOp:NF-YA6-VP16 plants, staminoid organs have been developed to separate petals. In the petals of the TfGLOp:NF-YA6-VP16 plants, the expression of a Torenia class C gene, PLENA (TfPLE), was found to be ectopically increased. Moreover, expression of TfPLE-VP16 under the control of the TfGLO promoter brought a similar staminoid phenotype observed in the TfGLOp:NF-YA6-VP16 plants. These results suggest that the introduction of the TfGLOp:NF-YA6-VP16 induced TfPLE expression, resulting in the formation of staminoid petals and separation of them.
Collapse
Affiliation(s)
- Natsumi Sekiguchi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan.
| | - Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
8
|
Zhao Y, Sun Y, Huang S, Liu Z, Feng H. Identification of an anther-specific promoter from a male sterile AB line in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). 3 Biotech 2022; 12:104. [PMID: 35463043 PMCID: PMC8971320 DOI: 10.1007/s13205-022-03160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
The promoter of the male sterile gene is important for studying male sterility. In this study, BraA08g014780.3C which differentially expressed between male sterile and fertile plants was identified from a genetic male sterile AB line of Chinese cabbage by RNA-seq. qRT-PCR revealed that BraA08g014780.3C was mainly expressed in the early stage of floral bud development in fertile plants, and preferentially expressed in their anthers. The promoter of BraA08g014780.3C was cloned and analyzed. Cis acting element analysis showed that the promoter of BraA08g014780.3C contains POLLEN1LELAT52 and GTGANTG10, which are both pollen-specific expression elements. The BraA08g014780.3Cp::GUS vector was constructed, then transformed to Arabidopsis thaliana Col-0. PCR analysis and sequencing of the transgenic Arabidopsis revealed that the GUS gene driven by the BraA08g014780.3C promoter was successfully transformed to the Arabidopsis. GUS staining indicated that the promoter of BraA08g014780.3C was an anther-specific promoter. Identifying the anther-specific promoter laid a foundation for revealing BraA08g014780.3C function in male sterility of Chinese cabbage. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03160-z.
Collapse
Affiliation(s)
- Ying Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Chen Y, Xu Z, Shen Q, Sun C. Floral organ-specific proteome profiling of the floral ornamental orchid (Cymbidium goeringii) reveals candidate proteins related to floral organ development. BOTANICAL STUDIES 2021; 62:23. [PMID: 34921643 PMCID: PMC8684572 DOI: 10.1186/s40529-021-00330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cymbidium goeringii, belonging to the Orchidaceae family, is an important ornamental plant with striking petals and lips. Extremely diversified floral patterns and morphologies make C. goeringii good research material to examine floral development of orchids. However, no floral organ-specific protein has been identified yet. To screen floral development associated proteins, four proteomes from petal (PE), lip (LI), gynostemium (GY), and sepal (SE) were analyzed using Tandem Mass Tag-based proteomic analysis. RESULTS A total of 6626 unique peptides encoding 2331 proteins were identified in our study. Proteins in several primary metabolic pathways, including amino acid metabolism, energy metabolism, and lipid metabolism, were identified as differentially expressed proteins. Interestingly, most of the energy metabolism-related proteins highly expressed in SE, indicating that SE is an important photosynthetic organ of C. goeringii flower. Furthermore, a number of phytohormone-related proteins and transcription factors (TFs) were identified in C. goeringii flowers. Expression analysis showed that 1-aminocyclopropane-1-carboxylate oxidase highly expressed in GY, IAA-amino acid hydrolase ILR1-like 4 and gibberellin receptor 1 C greatly expressed in LI, and auxin-binding protein ABP20 significantly expressed in SE, suggesting a significant role of hormones in the regulation of flower morphogenesis and development. For TFs, GY-highly expressed bHLH13, PE-highly expressed WRKY33, and GY-highly expressed VIP1, were identified. CONCLUSIONS Mining of floral organ differential expressed enzymes and TFs helps us to excavate candidate proteins related to floral organ development and to accelerate the breeding of Cymbidium plants.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China
| | - Zihan Xu
- College of Landscape and Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Zhang L, Zhou L, Yung WS, Su W, Huang M. Ectopic expression of Torenia fournieri TCP8 and TCP13 alters the leaf and petal phenotypes in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:856-866. [PMID: 34171126 DOI: 10.1111/ppl.13479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 05/12/2023]
Abstract
Teosinte branched1/cycloidea/proliferating cell factor (TCP) transcription factors (TFs) are essential for regulating plant developmental processes, which is still largely unknown in Torenia fournieri (T. fournieri), a widely used horticultural flower. In this study, we used a de novo transcriptome assembly method to predict the TCP transcription factors in T. fournieri. In total, 15 out of 21 predicted T. fournieri TCPs (TfTCPs) were isolated and verified with Sanger sequencing. Phylogenetic analysis showed that these 15 TfTCPs could be classified into two major classes. Most of these TfTCPs were expressed in floral buds, flowers, or leaves, suggesting an important role in developmental regulation in these tissues. Moreover, TfTCP8 and TfTCP13, the homologues of the Arabidopsis thaliana TCP5-like transcription factor, were able to bind to the conserved Class II TCP binding motifs and are localized to the nucleus, indicating that TfTCP8 and TfTCP13 act as transcriptional regulators. In agreement with the overexpression phenotype of AtTCP5, ectopic expression of TfTCP8 and TfTCP13 resulted in narrow leaves and the small petal phenotype in Arabidopsis, suggesting that these two TfTCPs potentially regulate leaf or flower shape in T. fournieri.
Collapse
Affiliation(s)
- Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Limeng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Mingkun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
11
|
Sucrose Enhances Anthocyanin Accumulation in Torenia by Promoting Expression of Anthocyanin Biosynthesis Genes. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the effects of different sucrose concentrations (3%, 5%, and 7%) on anthocyanin accumulation and plant growth in wild type (WT) and transgenic (T2) torenia cultivar “Kauai Rose” overexpressing the anthocyanin regulatory transcription factors B-Peru + mPAP1 or RsMYB1. Sucrose increased anthocyanin production in both WT and transgenic plants, with higher anthocyanin production in transgenic plants compared to WT plants. Higher sucrose concentrations increased production of anthocyanin in transgenic and WT plants, with increased anthocyanin production associated with increased expression of anthocyanin biosynthesis genes. Higher sucrose concentrations reduced growth of WT and transgenic plants. Our results indicate that sucrose enhances anthocyanin production in torenia by regulating anthocyanin biosynthesis genes.
Collapse
|
12
|
Sasaki K, Ohtsubo N. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. PLANTA 2020; 251:101. [PMID: 32333191 DOI: 10.1007/s00425-020-03393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 05/17/2023]
Abstract
Simultaneous knockdown or knockout of Torenia fournieri PLENA (TfPLE) and FALINELLI (TfFAR) genes with RNAi or genome-editing technologies generated a multi-petal phenotype in torenia. The MADS-box gene AGAMOUS (AG) is well known to play important roles in the development of stamens and carpels in Arabidopsis. Mutations in AG cause the morphological transformation of stamens and carpels into petaloid organs. In contrast, torenia (Torenia fournieri Lind.) has two types of class-C MADS-box genes, PLENA (PLE) and FALINELLI (FAR); however, their functions were previously undetermined. To examine the function of TfPLE and TfFAR in torenia, we used RNAi to knockdown expression of these two genes. TfPLE and TfFAR double-knockdown transgenic torenia plants had morphologically altered stamens and carpels that developed into petaloid organs. TfPLE knockdown transgenic plants also exhibited morphological transformations that included shortened styles, enlarged ovaries, and absent stigmata. Furthermore, simultaneous disruption of TfPLE and TfFAR genes by CRISPR/Cas9-mediated genome editing also resulted in the conversion of stamens and carpels into petaloid organs as was observed in the double-knockdown transgenic plants mediated by RNAi. In addition, the carpels of one TfPLE knockout mutant had the same morphological abnormalities as TfPLE knockdown transgenic plants. TfFAR knockdown genome-edited mutants had no morphological changes in their floral organs. These results clearly show that TfPLE and TfFAR cooperatively play important roles in the development of stamens and carpels. Simultaneous disruption of TfPLE and TfFAR functions caused a multi-petal phenotype, which is expected to be a highly valuable commercial floral trait in horticultural flowers.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan.
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
13
|
Boutigny AL, Dohin N, Pornin D, Rolland M. Overview and detectability of the genetic modifications in ornamental plants. HORTICULTURE RESEARCH 2020; 7:11. [PMID: 32025314 PMCID: PMC6994484 DOI: 10.1038/s41438-019-0232-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
The market of ornamental plants is extremely competitive, and for many species genetic engineering can be used to introduce original traits of high commercial interest. However, very few genetically modified (GM) ornamental varieties have reached the market so far. Indeed, the authorization process required for such plants has a strong impact on the profitability of the development of such products. Considering the numerous scientific studies using genetic modification on ornamental species of interest, a lot of transformed material has been produced, could be of commercial interest and could therefore be unintentionally released on the market. The unintentional use of GM petunia in breeding programs has indeed recently been observed. This review lists scientific publications using GM ornamental plants and tries to identify whether these plants could be detected by molecular biology tools commonly used by control laboratories.
Collapse
Affiliation(s)
- Anne-Laure Boutigny
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Nicolas Dohin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - David Pornin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Mathieu Rolland
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| |
Collapse
|
14
|
Azuma M, Oshima Y, Sakamoto S, Mitsuda N, Ohme-Takagi M, Otagaki S, Matsumoto S, Shiratake K. Dissecting promoter of InMYB1 gene showing petal-specific expression. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:243-248. [PMID: 31819729 PMCID: PMC6879369 DOI: 10.5511/plantbiotechnology.18.0529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/29/2018] [Indexed: 06/10/2023]
Abstract
We had previously reported that the InMYB1 promoter, the 1023 bp upstream region of InMYB1, works petal-specifically in various dicot plants by recognizing petal identity at a cellular level. To determine the petal-specific region in the InMYB1 promoter, Arabidopsis plants harboring InMYB1_1023b::GUS (β-glucuronidase), InMYB1_713b::GUS, InMYB1_506b::GUS, InMYB1_403b::GUS, InMYB1_332b::GUS, InMYB1_200b::GUS and InMYB1_140b::GUS were produced and confirmed a shortest region, which has the petal-specific promoter activity by using histochemical GUS assay. Petal-specific GUS staining was not observed in the Arabidopsis plants transformed with InMYB1_200b::GUS and InMYB1_140b::GUS, but observed in transgenic Arabidopsis plants harboring from InMYB1_1023b::GUS to InMYB1_332b::GUS. cDNA sequence of InMYB1 shows that 120 bp upstream region of InMYB1 is 5' untranslated region, suggesting that the 332-121 bp upstream region of InMYB1 contains an important element for petal-specific gene expression. In the Arabidopsis harboring the InMYB1_332-121b×3_TATA_Ω::GUS, petal-specific GUS staining was observed and the staining was stronger than in the Arabidopsis harboring InMYB1_1023b::GUS. This result shows that the 332-121 bp region is enough and essential for the petal specificity and the InMYB1_332-121b×3_TATA_Ω could be used for the molecular breeding of floricultural crops.
Collapse
Affiliation(s)
- Mirai Azuma
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
- Department of Agricultural Bioscience, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Institute for Environmental Science and Technology, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
15
|
Sasaki K. Utilization of transcription factors for controlling floral morphogenesis in horticultural plants. BREEDING SCIENCE 2018; 68:88-98. [PMID: 29681751 PMCID: PMC5903982 DOI: 10.1270/jsbbs.17114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 05/26/2023]
Abstract
Transcription factors play important roles not only in the development of floral organs but also in the formation of floral characteristics in various plant species. Therefore, transcription factors are reasonable targets for modifying these floral traits and generating new flower cultivars. However, it has been difficult to control the functions of transcription factors because most plant genes, including those encoding transcription factors, exhibit redundancy. In particular, it has been difficult to understand the functions of these redundant genes by genetic analysis. Thus, a breakthrough silencing method called chimeric repressor gene silencing technology (CRES-T) was developed specifically for plant transcription factors. This method transforms transcriptional activators into dominant repressors, and the artificial chimeric repressors suppress the function of transcription factors regardless of their redundancy. Among these chimeric repressors, some were found to be inappropriate for expression throughout the plant body because they resulted in deformities. For these chimeric repressors, utilization of floral organ-specific promoters overcomes this problem by avoiding expression throughout the plant body. In contrast, attachment of viral activation domain VP16 to transcriptional repressors effectively alters into transcriptional activators. This review presents the importance of transcription factors for characterizing floral traits, describes techniques for controlling the functions of transcription factors.
Collapse
|
16
|
Okitsu N, Noda N, Chandler S, Tanaka Y. Flower Color and Its Engineering by Genetic Modification. HANDBOOK OF PLANT BREEDING 2018. [DOI: 10.1007/978-3-319-90698-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Kasajima I, Ohtsubo N, Sasaki K. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind. HORTICULTURE RESEARCH 2017; 4:17008. [PMID: 28446955 PMCID: PMC5386234 DOI: 10.1038/hortres.2017.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 05/24/2023]
Abstract
Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| |
Collapse
|