1
|
Nakamura S, Ohtsubo K. Effects of Hard Water Boiling on Chalky Rice in Terms of Texture Improvement and Ca Fortification. Foods 2023; 12:2510. [PMID: 37444248 DOI: 10.3390/foods12132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In the present paper, we investigated the characteristics of chalky rice grains generated by ripening under high temperature and compared them with whole grains. We evaluated 14 unpolished Japonica rice grains harvested in Japan in 2021, and these samples (original grains) were divided into two groups (a whole grain group and a chalky grain one). We found that not only activities of endogenous amylase and proteinase, but also cell wall-degrading enzymes, such as xylanase and cellulase, changed markedly between chalky grains and whole grains. Using rice grains blended with 30% of chalky grains as the material, we compared the sugar and mineral contents and textural properties of the rice grains soaked and boiled in either ordinary water or hard water, such as Evian or Contrex. It was shown that xylanase, in addition to amylase and proteinase, may play an important role in changing the texture of the boiled chalky rice grains. For the sake of preventing the above-mentioned deterioration in the texture of boiled grains of chalky rice, we tried to use hard water, such as Evian or Contrex, to soak and cook the chalky rice grains. It was shown that the hard water was useful for the prevention of texture deterioration of the boiled rice grains due to inhibition of the activities of endogenous hydrolytic enzymes, such as α-amylase, β-amylase, proteinase, and xylanase. Furthermore, we found that the hard water was useful in increasing the calcium absorption through the meal by 2.6 to 16.5 times.
Collapse
Affiliation(s)
- Sumiko Nakamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Ken'ichi Ohtsubo
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
2
|
Nakamura S, Hasegawa M, Kobayashi Y, Komata C, Katsura J, Maruyama Y, Ohtsubo K. Palatability and Bio-Functionality of Chalky Grains Generated by High-Temperature Ripening and Development of Formulae for Estimating the Degree of Damage Using a Rapid Visco Analyzer of Japonica Unpolished Rice. Foods 2022; 11:3422. [PMID: 36360035 PMCID: PMC9658192 DOI: 10.3390/foods11213422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2023] Open
Abstract
Global warming inhibits grain filling in rice and leads to chalky grains, which are damaged in physical and cooking qualities. In the present paper, we evaluated 54 Japonica unpolished rice grains harvested in Japan in 2020, and these samples (original grains) were divided to two groups (whole grains and chalky grains). Using rice grains of 100% whole grains or those blended with 30% of chalky grains, we measured contents of sugars and amino acids, and textural properties of boiled rice grains. It was shown that the α-amylase activity and proteinase activity of raw chalky rice were significantly higher than those of whole rice grains, which led to the significant increase of low-molecular-weight sugars and free amino acids after boiling. Furthermore, hardness and toughness of the boiled rice grains were decreased markedly by blending chalky grains. The ratio of α-amylase activity of chalky grains to that of whole grains was shown to be a useful indicator for damage degree by high-temperature ripening. It became possible to estimate the degree of high-temperature damage of rice grains based on only the pasting properties of unpolished rice.
Collapse
Affiliation(s)
- Sumiko Nakamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Moeka Hasegawa
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Yuta Kobayashi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Chikashi Komata
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Junji Katsura
- NSP Ltd., Nakanoki 2-31-5-B, Funabashi-shi, Chiba 274-0826, Japan
| | | | - Ken’ichi Ohtsubo
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
3
|
Nakamura S, Satoh A, Aizawa M, Ohtsubo K. Characteristics of Physicochemical Properties of Chalky Grains of Japonica Rice Generated by High Temperature during Ripening. Foods 2021; 11:foods11010097. [PMID: 35010222 PMCID: PMC8750872 DOI: 10.3390/foods11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Global warming has caused devastating damage to starch biosynthesis, which has led to the increase in chalky grains of rice. This study was conducted to characterize the qualities of chalky rice grains and to develop the estimation formulae for their quality damage degree. We evaluated the chalkiness of 40 Japonica rice samples harvested in 2019, in Japan. Seven samples with a high ratio of chalky rice grains were selected and divided into two groups (whole grain and chalky grain). As a results of the various physicochemical measurements, it was shown that the surface layer hardness (H1) of cooked rice grains from chalky grains was significantly lower, and their overall hardness was significantly lower than those from the whole grains. In addition, α- and β-amylase activities, and sugar contents of the chalky rice grains were significantly higher than those of the whole rice grains. The developed estimation formula for the degree of retrogradation of H1 based on the α-amylase activities and pasting properties, showed correlation coefficients of 0.84 and 0.81 in the calibration and validation tests, respectively. This result presents the formula that could be used to estimate and to characterize the cooking properties of the rice samples ripened under high temperature.
Collapse
|
4
|
Fiaz S, Ahmad S, Noor MA, Wang X, Younas A, Riaz A, Riaz A, Ali F. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. Int J Mol Sci 2019; 20:E888. [PMID: 30791357 PMCID: PMC6412304 DOI: 10.3390/ijms20040888] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Grain quality improvement is a key target for rice breeders, along with yield. It is a multigenic trait that is simultaneously influenced by many factors. Over the past few decades, breeding for semi-dwarf cultivars and hybrids has significantly contributed to the attainment of high yield demands but reduced grain quality, which thus needs the attention of researchers. The availability of rice genome sequences has facilitated gene discovery, targeted mutagenesis, and revealed functional aspects of rice grain quality attributes. Some success has been achieved through the application of molecular markers to understand the genetic mechanisms for better rice grain quality; however, researchers have opted for novel strategies. Genomic alteration employing genome editing technologies (GETs) like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for reverse genetics has opened new avenues of research in the life sciences, including for rice grain quality improvement. Currently, CRISPR/Cas9 technology is widely used by researchers for genome editing to achieve the desired biological objectives, because of its simple targeting. Over the past few years many genes that are related to various aspects of rice grain quality have been successfully edited via CRISPR/Cas9 technology. Interestingly, studies on functional genomics at larger scales have become possible because of the availability of GETs. In this review, we discuss the progress made in rice by employing the CRISPR/Cas9 editing system and its eminent applications. We also elaborate possible future avenues of research with this system, and our understanding regarding the biological mechanism of rice grain quality improvement.
Collapse
Affiliation(s)
- Sajid Fiaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Mehmood Ali Noor
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China.
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fahad Ali
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
5
|
Nakata M, Fukamatsu Y, Miyashita T, Hakata M, Kimura R, Nakata Y, Kuroda M, Yamaguchi T, Yamakawa H. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains. FRONTIERS IN PLANT SCIENCE 2017; 8:2089. [PMID: 29270189 PMCID: PMC5723670 DOI: 10.3389/fpls.2017.02089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/23/2017] [Indexed: 05/05/2023]
Abstract
Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C, and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice.
Collapse
|