1
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Huang S, Li X, An K, Xu C, Liu Z, Wang G, Hou H, Zhang R, Wang Y, Yuan H, Luo J. Metabolomic Analysis Reveals the Diversity of Defense Metabolites in Nine Cereal Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:629. [PMID: 40006888 PMCID: PMC11859589 DOI: 10.3390/plants14040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cereal crops are important staple foods, and their defense metabolites hold significant research importance. In this study, we employed LC-MS-based untargeted and widely-targeted metabolomics to profile the leaf metabolome of nine cereal species, including rice, wheat, maize, barley, sorghum, common oat, foxtail millet, broomcorn millet, and adlay. A total of 9869 features were detected, among them, 1131 were annotated, encompassing 18 classes such as flavonoids, lipids, and alkaloids. Results revealed that 531 metabolites were detected in all species, while each cereal crop possessed 4 to 12 unique metabolites. Focusing on defense metabolites, we identified eight benzoxazinoids uniquely present in maize, wheat, and adlay. Hierarchical clustering based on metabolite abundance divided all metabolites into nine clusters, and subsequent pathway enrichment analysis revealed that the stress-related flavonoid biosynthesis pathway was enriched in multiple clusters. Further analysis showed that four downstream compounds of HBOA (2-hydroxy-1,4-benzoxazin-3-one) in the benzoxazinoid biosynthesis pathway were enriched in maize. Wheat uniquely accumulated the 4'-methylated product of tricin, trimethoxytricetin, whereas adlay accumulated the tricin precursor tricetin in the flavonoid biosynthesis pathway. In summary, this study elucidates the metabolic diversity in defense metabolites among various cereal crops, providing valuable background information for the improvement of stress resistance in cereal crops.
Collapse
Affiliation(s)
- Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Xindong Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Kejin An
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zhenhuan Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Guan Wang
- Yazhouwan National Laboratory, Sanya 572025, China;
| | - Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Yutong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Honglun Yuan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (S.H.); (X.L.); (K.A.); (Z.L.); (H.H.); (R.Z.); (Y.W.)
- Yazhouwan National Laboratory, Sanya 572025, China;
| |
Collapse
|
3
|
Margets A, Foster J, Kumar A, Maier TR, Masonbrink R, Mejias J, Baum TJ, Innes RW. The Soybean Cyst Nematode Effector Cysteine Protease 1 (CPR1) Targets a Mitochondrial Soybean Branched-Chain Amino Acid Aminotransferase (GmBCAT1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI06240068R. [PMID: 39158991 DOI: 10.1094/mpmi-06-24-0068-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains. CPR1 is conserved in all isolates of SCN sequenced to date, suggesting it is critical for virulence. Transient expression of CPR1 in Nicotiana benthamiana leaves suppressed cell death induced by a constitutively active nucleotide binding leucine-rich repeat protein, RPS5, indicating that CPR1 inhibits effector-triggered immunity. CPR1 localizes in part to the mitochondria when expressed in planta. Proximity-based labeling in transgenic soybean roots, co-immunoprecipitation, and cleavage assays identified a branched-chain amino acid aminotransferase from soybean (GmBCAT1) as a substrate of CPR1. Consistent with this, GmBCAT1 also localizes to mitochondria. Silencing of the CPR1 transcript in the nematode reduced penetration frequency in soybean roots, while the expression of CPR1 in soybean roots enhanced susceptibility. Our data demonstrates that CPR1 is a conserved effector protease with a direct target in soybean roots, highlighting it as a promising candidate for decoy engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anil Kumar
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Tom R Maier
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rick Masonbrink
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Joffrey Mejias
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Thomas J Baum
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
4
|
Payet RD, Bilham LJ, Kabir SMT, Monaco S, Norcott AR, Allen MGE, Zhu XY, Davy AJ, Brearley CA, Todd JD, Miller JB. Elucidation of Spartina dimethylsulfoniopropionate synthesis genes enables engineering of stress tolerant plants. Nat Commun 2024; 15:8568. [PMID: 39384757 PMCID: PMC11464771 DOI: 10.1038/s41467-024-51758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/16/2024] [Indexed: 10/11/2024] Open
Abstract
The organosulfur compound dimethylsulfoniopropionate (DMSP) has key roles in stress protection, global carbon and sulfur cycling, chemotaxis, and is a major source of climate-active gases. Saltmarshes are global hotspots for DMSP cycling due to Spartina cordgrasses that produce exceptionally high concentrations of DMSP. Here, in Spartina anglica, we identify the plant genes that underpin high-level DMSP synthesis: methionine S-methyltransferase (MMT), S-methylmethionine decarboxylase (SDC) and DMSP-amine oxidase (DOX). Homologs of these enzymes are common in plants, but differences in expression and catalytic efficiency explain why S. anglica accumulates such high DMSP concentrations and other plants only accumulate low concentrations. Furthermore, DMSP accumulation in S. anglica is consistent with DMSP having a role in oxidative and osmotic stress protection. Importantly, administration of DMSP by root uptake or over-expression of Spartina DMSP synthesis genes confers plant tolerance to salinity and drought offering a route for future bioengineering for sustainable crop production.
Collapse
Affiliation(s)
- Rocky D Payet
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lorelei J Bilham
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Shah Md Tamim Kabir
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Serena Monaco
- School of Chemistry, Pharmacy, and Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ash R Norcott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Mellieha G E Allen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Anthony J Davy
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - J Benjamin Miller
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
5
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
6
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
7
|
Ibe CN, Bailey SL, Korolev AV, Brett P, Saunders DGO. Isocitrate lyase promotes Puccinia striiformis f. sp. tritici susceptibility in wheat (Triticum aestivum) by suppressing accumulation of glyoxylate cycle intermediates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2033-2044. [PMID: 38949911 DOI: 10.1111/tpj.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.
Collapse
Affiliation(s)
- Carol N Ibe
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sarah L Bailey
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Paul Brett
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
8
|
Chen C, Naveed H, Chen K. Research progress on branched-chain amino acid aminotransferases. Front Genet 2023; 14:1233669. [PMID: 38028625 PMCID: PMC10658711 DOI: 10.3389/fgene.2023.1233669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Branched-chain amino acid aminotransferases, widely present in natural organisms, catalyze bidirectional amino transfer between branched-chain amino acids and branched-chain α-ketoacids in cells. Branched-chain amino acid aminotransferases play an important role in the metabolism of branched-chain amino acids. In this paper, the interspecific evolution and biological characteristics of branched-chain amino acid aminotransferases are introduced, the related research of branched-chain amino acid aminotransferases in animals, plants, microorganisms and humans is summarized and the molecular mechanism of branched-chain amino acid aminotransferase is analyzed. It has been found that branched-chain amino acid metabolism disorders are closely related to various diseases in humans and animals and plants, such as diabetes, cardiovascular diseases, brain diseases, neurological diseases and cancer. In particular, branched-chain amino acid aminotransferases play an important role in the development of various tumors. Branched-chain amino acid aminotransferases have been used as potential targets for various cancers. This article reviews the research on branched-chain amino acid aminotransferases, aiming to provide a reference for clinical research on targeted therapy for various diseases and different cancers.
Collapse
Affiliation(s)
- Can Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Huang Y, Song J, Hao Q, Mou C, Wu H, Zhang F, Zhu Z, Wang P, Ma T, Fu K, Chen Y, Nguyen T, Liu S, Jiang L, Wan J. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107923. [PMID: 37549571 DOI: 10.1016/j.plaphy.2023.107923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Seed dormancy is a critical trait that enhances plant survival by preventing seed germination at the wrong time or under unsuitable conditions. Lack of seed dormancy in rice can lead to pre-harvest sprouting on mother plants leading to reduced yield and seed quality. Although some genes have been identified, knowledge of regulation of seed dormancy is limited. Here, we characterized a weak seed dormancy mutant named weak seed dormancy 1 (wsd1) that showed a higher seed germination percentage than the wild-type following the harvest ripeness. We cloned the WSD1 encoding an aminotransferase protein using a MutMap approach. WSD1 was stably expressed after imbibition and its protein was localized in the endoplasm reticulum. A widely targeted metabolomics assay and amino acid analysis showed that WSD1 had a role in regulating homeostasis of amino acids. PAC treatment and RNA-seq analysis showed that WSD1 regulates seed dormancy by involvement in the GA biosynthesis pathway. GA1 content and expression of GA biosynthesis-related genes were increased in the wsd1 mutant compared with the wild-type. The wsd1 mutant had reduced sensitivity to ABA. Our overall results indicated that WSD1 regulates seed dormancy by balancing the ABA and GA pathways.
Collapse
Affiliation(s)
- Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongming Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Fu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Natural Sciences, Quynhon University, Quynhon, 590000, Binhdinh, Viet Nam
| | - Shijia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Zakaria WGE, Atia MM, Ali AZ, Abbas EEA, Salim BMA, Marey SA, Hatamleh AA, Elnahal ASM. Assessing the Effectiveness of Eco-Friendly Management Approaches for Controlling Wheat Yellow Rust and Their Impact on Antioxidant Enzymes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2954. [PMID: 37631164 PMCID: PMC10458409 DOI: 10.3390/plants12162954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease that causes significant yield losses in wheat production worldwide, including in Egypt. The use of biocontrol agents is among the best eco-friendly management strategies to control this disease, as they are more sustainable and environmentally friendly than traditional chemical control methods. In a comparative analysis, antioxidant enzyme activity and various management approaches were compared with two bacterial biocontrol agents, Bacillus subtilis and Pseudomonas putida. This study showed the remarkable efficacy of endophytic bacteria, B. subtilis and P. putida, in mitigating wheat stripe rust infection across three wheat varieties, namely Misr1, Gimmeiza11, and Sids12. B. subtilis exhibited superior performance compared to P. putida, resulting in infection types of 1 and 2.66, respectively, following inoculation. The highest reduction rate was observed with Tilit fungicide (500 ppm), followed by B. subtilis and Salicylic acid (1000 ppm), respectively. Variations in wheat varieties' response to Pst infection were observed, with Misr1 exhibiting the lowest infection and Sids12 showing high susceptibility. Among the tested inducers, Salicylic acid demonstrated the greatest reduction in disease infection, followed by Indole acetic acid, while Oxalic acid exhibited the lowest decrease. Additionally, the study evaluated the activities of five antioxidant enzymes, including Catalase, Ascorbate peroxidase (APX), glutathione reductase (GR), Superoxide dismutase (SOD), and peroxidase (POX), in the wheat-stripe rust interaction under different integrated management approaches. The wheat variety Misr1 treated with Tilit (500 ppm), B. subtilis, Salicylic acid, Montoro (500 ppm), and P. putida exhibited the highest increase in all enzymatic activities. These findings provide valuable insights into the effectiveness of B. subtilis and P. putida as biocontrol agents for wheat stripe rust control in Egypt, emphasizing their potential role in sustainable, integrated, and environmentally friendly management practices.
Collapse
Affiliation(s)
- Waleed Gamal Eldein Zakaria
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (W.G.E.Z.); (M.M.A.); (E.E.A.A.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Mahmoud Mohamed Atia
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (W.G.E.Z.); (M.M.A.); (E.E.A.A.)
| | - Ahmed Zaki Ali
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (W.G.E.Z.); (M.M.A.); (E.E.A.A.)
| | - Entsar E. A. Abbas
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (W.G.E.Z.); (M.M.A.); (E.E.A.A.)
| | - Bilkess M. A. Salim
- Plant Production Department, Faculty of Agriculture, Sabha University, Sabha P.O. Box 18758, Libya;
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Saeed Mohammed Elnahal
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (W.G.E.Z.); (M.M.A.); (E.E.A.A.)
| |
Collapse
|
11
|
Liu X, Matsumoto H, Lv T, Zhan C, Fang H, Pan Q, Xu H, Fan X, Chu T, Chen S, Qiao K, Ma Y, Sun L, Wang Q, Wang M. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat Microbiol 2023; 8:1419-1433. [PMID: 37142774 DOI: 10.1038/s41564-023-01379-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Mutualistic interactions between host plants and their microbiota have the potential to provide disease resistance. Most research has focused on the rhizosphere, but it is unclear how the microbiome associated with the aerial surface of plants protects against infection. Here we identify a metabolic defence underlying the mutualistic interaction between the panicle and the resident microbiota in rice to defend against a globally prevalent phytopathogen, Ustilaginoidea virens, which causes false-smut disease. Analysis of the 16S ribosomal RNA gene and internal transcribed spacer sequencing data identified keystone microbial taxa enriched in the disease-suppressive panicle, in particular Lactobacillus spp. and Aspergillus spp. Integration of these data with primary metabolism profiling, host genome editing and microbial isolate transplantation experiments revealed that plants with these taxa could resist U. virens infection in a host branched-chain amino acid (BCAA)-dependent manner. Leucine, a predominant BCAA, suppressed U. virens pathogenicity by inducing apoptosis-like cell death through H2O2 overproduction. Additionally, preliminary field experiments showed that leucine could be used in combination with chemical fungicides with a 50% reduction in dose but similar efficacy to higher fungicide concentrations. These findings may facilitate protection of crops from panicle diseases prevalent at a global scale.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianxing Lv
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chengfang Zhan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongda Fang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qianqian Pan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haorong Xu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Fan
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tianyi Chu
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kun Qiao
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Youning Ma
- China National Rice Research Institute, Hangzhou, China
| | - Li Sun
- Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiangwei Wang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology, and Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Minter F, Saunders DGO. Safeguarding wheat yields from cereal fungal invaders in the postgenomic era. Curr Opin Microbiol 2023; 73:102310. [PMID: 37018996 DOI: 10.1016/j.mib.2023.102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Wheat production is under constant threat from pests and pathogens, with fungal foliar diseases causing considerable annual yield losses. However, recent improvements in genomic tools and resources provide an unprecedented opportunity to enhance wheat's resilience in the face of these biotic constraints. Here, we discuss the impact of these advances on three key areas of managing fungal diseases of wheat: (i) enhancing the abundance of resistance traits available for plant breeding, (ii) accelerating the identification of novel fungicide targets and (iii) developing better tools for disease diagnostics and surveillance. Embracing these new genomics-led technological innovations in crop protection could revolutionise our wheat production system to improve resilience and prevent yield losses.
Collapse
|
13
|
Norman M, Bariana H, Bansal U, Periyannan S. The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance. PHYTOPATHOLOGY 2023; 113:667-677. [PMID: 36897760 DOI: 10.1094/phyto-02-23-0041-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rust diseases are among the major constraints for wheat production worldwide due to the emergence and spread of highly destructive races of Puccinia. The most common approach to minimize yield losses due to rust is to use cultivars that are genetically resistant. Modern wheat cultivars, landraces, and wild relatives can contain undiscovered resistance genes, which typically encode kinase or nucleotide-binding site leucine rich repeat (NLR) domain containing receptor proteins. Recent research has shown that these genes can provide either resistance in all growth stages (all-stage resistance; ASR) or specially in later growth stages (adult-plant resistance; APR). ASR genes are pathogen and race-specific, meaning can function against selected races of the Puccinia fungus due to the necessity to recognize specific avirulence molecules in the pathogen. APR genes are either pathogen-specific or multipathogen resistant but often race-nonspecific. Prediction of resistance genes through rust infection screening alone remains complex when more than one resistance gene is present. However, breakthroughs during the past half century such as the single-nucleotide polymorphism-based genotyping techniques and resistance gene isolation strategies like mutagenesis, resistance gene enrichment, and sequencing (MutRenSeq), mutagenesis and chromosome sequencing (MutChromSeq), and association genetics combined with RenSeq (AgRenSeq) enables rapid transfer of resistance from source to modern cultivars. There is a strong need for combining multiple genes for better efficacy and longer-lasting resistance. Hence, techniques like gene cassette creation speeds up the gene combination process, but their widespread adoption and commercial use is limited due to their transgenic nature.
Collapse
Affiliation(s)
- Michael Norman
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT 2601, Australia
| | - Harbans Bariana
- School of Science, Western Sydney University, Bourke Road, Richmond, NSW 2753, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Sambasivam Periyannan
- School of Agriculture and Environmental Science & Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| |
Collapse
|
14
|
Zhou L, Zhu T, Han S, Li S, Liu Y, Lin T, Qiao T. Changes in the Histology of Walnut ( Juglans regia L.) Infected with Phomopsis capsici and Transcriptome and Metabolome Analysis. Int J Mol Sci 2023; 24:ijms24054879. [PMID: 36902308 PMCID: PMC10003368 DOI: 10.3390/ijms24054879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Phomopsis capsici (P. capsici) causes branch blight of walnuts, which leads to significant economic loss. The molecular mechanism behind the response of walnuts remains unknown. Paraffin sectioning and transcriptome and metabolome analyses were performed to explore the changes in tissue structure, gene expression, and metabolic processes in walnut after infection with P. capsici. We found that P. capsici caused serious damage to xylem vessels during the infestation of walnut branches, destroying the structure and function of the vessels and creating obstacles to the transport of nutrients and water to the branches. The transcriptome results showed that differentially expressed genes (DEGs) were mainly annotated in carbon metabolism and ribosomes. Further metabolome analyses verified the specific induction of carbohydrate and amino acid biosynthesis by P. capsici. Finally, association analysis was performed for DEGs and differentially expressed metabolites (DEMs), which focused on the synthesis and metabolic pathways of amino acids, carbon metabolism, and secondary metabolites and cofactors. Three significant metabolites were identified: succinic semialdehyde acid, fumaric acid, and phosphoenolpyruvic acid. In conclusion, this study provides data reference on the pathogenesis of walnut branch blight and direction for breeding walnut to enhance its disease resistance.
Collapse
|
15
|
Arora S, Steed A, Goddard R, Gaurav K, O'Hara T, Schoen A, Rawat N, Elkot AF, Korolev AV, Chinoy C, Nicholson MH, Asuke S, Antoniou-Kourounioti R, Steuernagel B, Yu G, Awal R, Forner-Martínez M, Wingen L, Baggs E, Clarke J, Saunders DGO, Krasileva KV, Tosa Y, Jones JDG, Tiwari VK, Wulff BBH, Nicholson P. A wheat kinase and immune receptor form host-specificity barriers against the blast fungus. NATURE PLANTS 2023; 9:385-392. [PMID: 36797350 PMCID: PMC10027608 DOI: 10.1038/s41477-023-01357-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2023] [Indexed: 05/18/2023]
Abstract
Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.
Collapse
Affiliation(s)
- Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rachel Goddard
- John Innes Centre, Norwich Research Park, Norwich, UK
- Limagrain UK Ltd, Lincolnshire, UK
| | - Kumar Gaurav
- John Innes Centre, Norwich Research Park, Norwich, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, UK
| | - Tom O'Hara
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ahmed F Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | | | | | | | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Rea Antoniou-Kourounioti
- John Innes Centre, Norwich Research Park, Norwich, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, UK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rajani Awal
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Erin Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | |
Collapse
|
16
|
Jensen C, Korolev A, Corredor-Moreno P, Minter F, Dodds PN, Saunders DGO. Caveats of Using Bacterial Type Three Secretion Assays for Validating Fungal Avirulence Effectors in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1061-1066. [PMID: 36445162 DOI: 10.1094/mpmi-08-22-0167-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Functional characterization of effector proteins of fungal obligate biotrophic pathogens, especially confirmation of avirulence (Avr) properties, has been notoriously difficult, due to the experimental intractability of many of these organisms. Previous studies in wheat have shown promising data suggesting the type III secretion system (T3SS) of bacteria may be a suitable surrogate for delivery and detection of Avr properties of fungal effectors. However, these delivery systems were tested in the absence of confirmed Avr effectors. Here, we tested two previously described T3SS-mediated delivery systems for their suitability when delivering two confirmed Avr effectors from two fungal pathogens of wheat, Puccinia graminis f. sp. tritici and Magnaporthe oryzae pathotype tritici. We showed that both effectors (AvrSr50 and AvrRmg8) were unable to elicit a hypersensitive response on wheat seedlings with the corresponding resistance gene when expressed by the Pseudomonas fluorescens "Effector to Host Analyser" (EtHAn) system. Furthermore, we found the utility of Burkholderia glumae for screening Avr phenotypes is severely limited, as the wild-type strain elicits nonhost cell death in multiple wheat accessions. These results provide valuable insight into the suitability of these systems for screening fungal effectors for Avr properties that may help guide further development of surrogate bacterial delivery systems in wheat. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Cassandra Jensen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Andrey Korolev
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | | | - Francesca Minter
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Peter N Dodds
- CSIRO Agriculture and Food Australia, GPO Box 1700, Clunies Ross Street, Canberra ACT 2601, Australia
| | - Diane G O Saunders
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
17
|
Advanced Genetic Studies on Powdery Mildew Resistance in TGR-1551. Int J Mol Sci 2022; 23:ijms232012553. [PMID: 36293404 PMCID: PMC9604395 DOI: 10.3390/ijms232012553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cucurbits powdery mildew (CPM) is one of the main limiting factors of melon cultivation worldwide. Resistance to races 1, 2, and 5 has been reported in the African accession TGR-1551, whose resistance is controlled by a dominant–recessive epistasis. The dominant and recessive quantitative trail loci (QTL) have previously been located in chromosomes 5 and 12, respectively. We used several densely genotyped BC3 families derived from the cross between TGR-1551 and the susceptible cultivar ‘Bola de Oro’ to finely map these resistance regions. The further phenotyping and genotyping of the selected BC5, BC5S1, BC5S2, BC4S1, BC4xPS, and (BC4xPS) S1 offspring allowed for the narrowing of the candidate intervals to a 250 and 381 kb region in chromosomes 5 and 12, respectively. Moreover, the temperature effect over the resistance provided by the dominant gene has been confirmed. High resolution melting markers (HRM) were tightly linked to both resistance regions and will be useful in marker-assisted selection programs. Candidate R genes with variants between parents that caused a potential modifier impact on the protein function were identified within both intervals. These candidate genes provide targets for future functional analyses to better understand the resistance to powdery mildew in melons.
Collapse
|
18
|
Corredor-Moreno P, Badgami R, Jones S, Saunders DGO. Temporally coordinated expression of nuclear genes encoding chloroplast proteins in wheat promotes Puccinia striiformis f. sp. tritici infection. Commun Biol 2022; 5:853. [PMID: 35996019 PMCID: PMC9395331 DOI: 10.1038/s42003-022-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes. A transcriptome time course of Puccinia striiformis f. sp. tritici (Pst) infection reveals nuclear genes encoding chloroplast-localized proteins are manipulated during infection and highlights TaCSP41a disruption as a target for resistance breeding.
Collapse
Affiliation(s)
| | | | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
19
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
20
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
21
|
Bouvet L, Holdgate S, James L, Thomas J, Mackay IJ, Cockram J. The evolving battle between yellow rust and wheat: implications for global food security. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:741-753. [PMID: 34821981 PMCID: PMC8942934 DOI: 10.1007/s00122-021-03983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.
Collapse
Affiliation(s)
- Laura Bouvet
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sarah Holdgate
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Lucy James
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jane Thomas
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
22
|
Hüdig M, Laibach N, Hein AC. Genome Editing in Crop Plant Research-Alignment of Expectations and Current Developments. PLANTS (BASEL, SWITZERLAND) 2022; 11:212. [PMID: 35050100 PMCID: PMC8778883 DOI: 10.3390/plants11020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well.
Collapse
Affiliation(s)
- Meike Hüdig
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Natalie Laibach
- Centre for Research in Agricultural Genomics (CRAG), Edifici CRAG-Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Anke-Christiane Hein
- Federal Agency for Nature Conservation, Assessment of Genetically Modified Organisms, Konstantinstraße 110, 53179 Bonn, Germany
| |
Collapse
|
23
|
Wang P, Yang L, Sun J, Yang Y, Qu Y, Wang C, Liu D, Huang L, Cui X, Liu Y. Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 12:752683. [PMID: 35069616 PMCID: PMC8766989 DOI: 10.3389/fpls.2021.752683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Collapse
Affiliation(s)
- Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jialing Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| |
Collapse
|
24
|
Bouvet L, Percival-Alwyn L, Berry S, Fenwick P, Mantello CC, Sharma R, Holdgate S, Mackay IJ, Cockram J. Wheat genetic loci conferring resistance to stripe rust in the face of genetically diverse races of the fungus Puccinia striiformis f. sp. tritici. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:301-319. [PMID: 34837509 PMCID: PMC8741662 DOI: 10.1007/s00122-021-03967-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/05/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Analysis of a wheat multi-founder population identified 14 yellow rust resistance QTL. For three of the four most significant QTL, haplotype analysis indicated resistance alleles were rare in European wheat. Stripe rust, or yellow rust (YR), is a major fungal disease of wheat (Triticum aestivum) caused by Puccinia striiformis Westend f. sp. tritici (Pst). Since 2011, the historically clonal European Pst races have been superseded by the rapid incursion of genetically diverse lineages, reducing the resistance of varieties previously showing durable resistance. Identification of sources of genetic resistance to such races is a high priority for wheat breeding. Here we use a wheat eight-founder multi-parent population genotyped with a 90,000 feature single nucleotide polymorphism array to genetically map YR resistance to such new Pst races. Genetic analysis of five field trials at three UK sites identified 14 quantitative trait loci (QTL) conferring resistance. Of these, four highly significant loci were consistently identified across all test environments, located on chromosomes 1A (QYr.niab-1A.1), 2A (QYr.niab-2A.1), 2B (QYr.niab-2B.1) and 2D (QYr.niab-2D.1), together explaining ~ 50% of the phenotypic variation. Analysis of these four QTL in two-way and three-way combinations showed combinations conferred greater resistance than single QTL, and genetic markers were developed that distinguished resistant and susceptible alleles. Haplotype analysis in a collection of wheat varieties found that the haplotypes associated with YR resistance at three of these four major loci were rare (≤ 7%) in European wheat, highlighting their potential utility for future targeted improvement of disease resistance. Notably, the physical interval for QTL QYr.niab-2B.1 contained five nucleotide-binding leucine-rich repeat candidate genes with integrated BED domains, of which two corresponded to the cloned resistance genes Yr7 and Yr5/YrSp.
Collapse
Affiliation(s)
- Laura Bouvet
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
25
|
Zhang T. Comparative transcriptome analysis identifies a positive regulator of wheat rust susceptibility that modulates amino acid metabolism. THE PLANT CELL 2021; 33:1409-1410. [PMID: 35234950 PMCID: PMC8254487 DOI: 10.1093/plcell/koab058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Garcia-Ruiz H, Szurek B, Van den Ackerveken G. Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Curr Opin Biotechnol 2021; 70:187-195. [PMID: 34153774 PMCID: PMC8878094 DOI: 10.1016/j.copbio.2021.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Alternatives to protect crops against diseases are desperately needed to secure world food production and make agriculture more sustainable. Genetic resistance to pathogens utilized so far is mostly based on single dominant resistance genes that mediate specific recognition of invaders and that is often rapidly broken by pathogen variants. Perturbation of plant susceptibility (S) genes offers an alternative providing plants with recessive resistance that is proposed to be more durable. S genes enable the establishment of plant disease, and their inactivation provides opportunities for resistance breeding of crops. However, loss of S gene function can have pleiotropic effects. Developments in genome editing technology promise to provide powerful methods to precisely interfere with crop S gene functions and reduce tradeoffs.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
| |
Collapse
|
27
|
Adams TM, Olsson TSG, Ramírez-González RH, Bryant R, Bryson R, Campos PE, Fenwick P, Feuerhelm D, Hayes C, Henriksson T, Hubbard A, Jevtić R, Judge C, Kerton M, Lage J, Lewis CM, Lilly C, Meidan U, Novoselović D, Patrick C, Wanyera R, Saunders DGO. Rust expression browser: an open source database for simultaneous analysis of host and pathogen gene expression profiles with expVIP. BMC Genomics 2021; 22:166. [PMID: 33750297 PMCID: PMC7941908 DOI: 10.1186/s12864-021-07488-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called “field pathogenomics”. As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. Results Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser (http://www.rust-expression.com). This enables for the first time simultaneous ‘point-and-click’ access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. Conclusions The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07488-3.
Collapse
Affiliation(s)
- Thomas M Adams
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Ruth Bryant
- RAGT Seeds Ltd, Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - Rosie Bryson
- BASF SE, Agricultural Centre, Limburgerhof, Germany
| | | | | | - David Feuerhelm
- Syngenta Seeds Ltd, Hill Farm Road, Cambridgeshire, CB22 4QT, UK
| | | | | | | | | | | | - Matthew Kerton
- DSV United Kingdom Ltd, Banbury, Oxfordshire, OX17 1FE, UK
| | - Jacob Lage
- KWS UK Limited, Hertfordshire, SG8 7RE, UK
| | - Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Christine Lilly
- Frontier Agriculture, Witham St Hughs, Lincolnshire, LN6 9TN, UK
| | - Udi Meidan
- Hazera Seeds Ltd., Berurim M.P Shikmim, 7983700, Tel Aviv-Yafo, Israel
| | | | - Colin Patrick
- Masstock Arable (UK) Ltd. (trading as Agrii), Andoversford, Gloucestershire, GL54 4LZ, UK
| | - Ruth Wanyera
- Kenya Agricultural and Livestock Research Organization, Njoro, Nakuru, Kenya
| | | |
Collapse
|