1
|
Qi T, He F, Zhang X, Wang J, Zhang Z, Jiang H, Zhao B, Du C, Che Y, Feng X, Wang Y, Li F. Genome-Wide Identification and Expression Profiling of Potato ( Solanum tuberosum L.) Universal Stress Proteins Reveal Essential Roles in Mechanical Damage and Deoxynivalenol Stress. Int J Mol Sci 2024; 25:1341. [PMID: 38279341 PMCID: PMC10816615 DOI: 10.3390/ijms25021341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.
Collapse
Affiliation(s)
- Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xinqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Zengli Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Heran Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yunzhu Che
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yingnan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| |
Collapse
|