1
|
Zhong Y, Ge L, Song Y, Luo Z, Wang J, Liu M, Yan F. Analysis of Meiotic Behavior and 2n Pollen Formation Frequency in Triploid Hybrids of Chinese Jujube. PLANTS (BASEL, SWITZERLAND) 2025; 14:1643. [PMID: 40508318 PMCID: PMC12157105 DOI: 10.3390/plants14111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 06/16/2025]
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), an economically significant fruit tree native to China, is valued for both fresh and dried uses. In plants, 2n gametes serve as the fundamental basis for creating a sexual polyploid germplasm. This study investigated the 2n gametogenesis frequency in triploid hybrid jujubes through meiotic analysis of the hybrid strain Q161 and a two-year pollen analysis on hybrid progeny, assessing the natural 2n pollen frequencies to identify a high-2n-pollen germplasm and revealing the occurrence of 2n pollen. Meiotic analysis of the triploid hybrid Q161 (2n = 36) revealed cytological anomalies, including binucleate cells (22.80% abnormal tetrads), with natural 2n pollen production rates reaching 4.00% and 4.67% over two consecutive years. Scanning electron microscopy (SEM) revealed that the 2n pollen exhibited pronounced exine ornamentation with cerebroid sculpturing and tubercle-like structures at the apertures. Analysis of the triploid progeny for two consecutive years demonstrated a pollen viability of 30.45% and 23.83% (CV: 19. 39-29.69%), with the mean 2n pollen frequencies of 22.52% and 7.64%, peaking at 52.16% and 28.95% in elite individuals. Six triploid germplasm accessions with naturally elevated 2n pollen frequencies were identified. Under natural conditions, a triploid hybrid germplasm in Chinese jujube produces 2n pollen grains due to abnormal meiotic behavior, and a natural triploid germplasm with high pollen productivity was identified. This research provides a critical theoretical foundation for sexual polyploid breeding strategies.
Collapse
Affiliation(s)
- Yunxi Zhong
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry, Tarim University, Alar 843300, China; (Y.Z.); (L.G.); (Y.S.); (Z.L.)
| | - Lixin Ge
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry, Tarim University, Alar 843300, China; (Y.Z.); (L.G.); (Y.S.); (Z.L.)
| | - Yinfang Song
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry, Tarim University, Alar 843300, China; (Y.Z.); (L.G.); (Y.S.); (Z.L.)
| | - Zhi Luo
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry, Tarim University, Alar 843300, China; (Y.Z.); (L.G.); (Y.S.); (Z.L.)
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China;
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
| | - Fenfen Yan
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry, Tarim University, Alar 843300, China; (Y.Z.); (L.G.); (Y.S.); (Z.L.)
| |
Collapse
|
2
|
Zhao Y, Zhang J, Fang Y, Zhang P, Chen H. The plant SMC5/6 complex: DNA repair, developmental regulation, and immune responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109267. [PMID: 39515004 DOI: 10.1016/j.plaphy.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex plays a pivotal role in safeguarding the structural integrity and morphology of chromosomes, thereby contributing to genomic stability-a cornerstone for normal growth and development across organisms. Beyond its fundamental role in eukaryotic DNA damage repair, recent research has broadened our understanding of SMC5/6's multifaceted functions. It has emerged as a crucial regulator not only of the cell cycle but also in developmental processes, plant immunity, and meiotic DNA damage repair. In this review, we highlight its novel roles in modulating plant growth, development, and immunity, providing fresh perspectives on how this complex might help combat DNA damage stress and orchestrate growth strategies. Furthermore, we emphasize that SMC5/6 offers a unique window into the intricate mechanisms underlying genomic maintenance, development, and stress responses, with profound implications for crop improvement.
Collapse
Affiliation(s)
- Yan Zhao
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yiru Fang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pingxian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Hanchen Chen
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Yazhouwan National Laboratory, Sanya, Hainan, 572000, China.
| |
Collapse
|
3
|
Etoundi E, Vastrade M, Berthelin C, Kellner K, Fafin-Lefèvre M, Van Doninck K. Transition from sexuality to androgenesis through a meiotic modification during spermatogenesis in freshwater Corbicula clams. PLoS One 2024; 19:e0313753. [PMID: 39591476 PMCID: PMC11594415 DOI: 10.1371/journal.pone.0313753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Asexual taxa are often considered as rare and vowed to long-term extinction, notably because of their reduced ability for rapid genetic changes and potential adaptation. The rate at which they derive from sexual ancestors and their developmental mode however influence genetic variation in asexual populations. Understanding the transition from sexuality to asexuality is therefore important to infer the evolutionary outcome of asexual taxa. The present work explored the transition from sexuality to androgenesis, a reproductive mode in which the males use female resources to clone themselves, in the freshwater Corbicula clams. Since androgenetic lineages are distinguishable from sexual clams by the production of unreduced sperm, this study investigated the cytological mechanisms underlying spermatogenesis in Corbicula by following the DNA content variation of male germ cells. The widespread androgenetic C. sp. form A/R lineage was compared to the sexual species C. japonica and C. sandai. While in C. japonica, the last stages of spermatogenesis are reduced through a canonical meiosis process, no reduced or duplicated stages were observed in C. sp. form A/R, suggesting a meiosis modification in this lineage. However, 45% of C. sandai spermatozoa were unreduced. The production of unreduced sperm may condition or provide the potential for the emergence of androgenesis in this sexual species. Being closely related to androgenetic lineages and found in sympatry with them in Lake Biwa (Japan), C. sandai might be an origin of androgenetic lineage emergence, or even an origin of the androgenetic reproductive mode in Corbicula.
Collapse
Affiliation(s)
- Emilie Etoundi
- Laboratory of Evolutionary Genetics and Ecology, Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
| | - Martin Vastrade
- Laboratory of Evolutionary Genetics and Ecology, Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
| | - Clothilde Berthelin
- Unité Biologie des Organismes et des Ecosytèmes Aquatiques (BOREA, UMR 7208), Université de Caen Normandie, Sorbonne Université, Museum National d’histoire Naturelle, Université Pierre et Marie Curie, CNRS, IRD, Caen, France
| | - Kristell Kellner
- Unité Biologie des Organismes et des Ecosytèmes Aquatiques (BOREA, UMR 7208), Université de Caen Normandie, Sorbonne Université, Museum National d’histoire Naturelle, Université Pierre et Marie Curie, CNRS, IRD, Caen, France
| | | | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology, Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Namur, Belgium
- Université libre de Bruxelles (ULB), Molecular Biology & Evolution, Brussels, Belgium
| |
Collapse
|
4
|
Othmani A, Hamza H, Kadri K, Sellemi A, Leus L, Werbrouck SPO. The Promising Potential of Triploidy in Date Palm ( Phoenix dactylifera L.) Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:815. [PMID: 38592841 PMCID: PMC10975707 DOI: 10.3390/plants13060815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Date palms are a vital part of oasis ecosystems and are an important source of income in arid and semi-arid areas. Crossbreeding is limited due to the long juvenile stage of date palms and their dioecious nature. The aim of this study was to create triploid date palms to obtain larger and seedless fruits and to increase resilience to abiotic stresses. A tetraploid date palm mutant was crossed with a diploid male palm, yielding hundreds of seeds suspected of containing triploid embryos. Six years after planting, four palms with confirmed triploidy reached maturity. They are phenotypically distinct from diploids, with a thicker rachis, thinner spines, wider and longer midleaf spines, and a longer apical spine. They were classified as sterile bisexual, sterile male and fertile female. One of the latter produced very tasty dates with a very small seed, which is promising for the marketability and profitability of date palm fruits. This first report on triploid date palms provides a way in which to make a significant leap forward in date palm breeding. Given the vigor and fruit quality of female triploid date palms, compared to their diploid counterparts, they will be the target of breeding programs and may spearhead new oases.
Collapse
Affiliation(s)
- Ahmed Othmani
- Laboratory for In Vitro Tissue Culture, Regional Centre for Research in Oasis Agriculture, Tozeur Km1, Degueche 2260, Tunisia; (A.O.); (A.S.)
- LR21AGR03-Production and Protection for Sustainable Horticulture (2-PHD), Regional Research Centre on Horticulture and Organic Agriculture Chott Mariem, University of Sousse, Sousse 4042, Tunisia
| | - Hammadi Hamza
- Arid and Oasis Cropping Laboratory, Institute of Arid Lands, Medenine 4119, Tunisia;
| | - Karim Kadri
- Biotechnology and Genetic Resources Laboratory, Regional Centre for Research in Oasis Agriculture, BO 62, Degueche 2260, Tunisia;
- Laboratory of Biotechnology Applied to Agriculture, National Institute for Agronomic Research of Tunis, University of Carthage Tunis, Ariana 2049, Tunisia
| | - Amel Sellemi
- Laboratory for In Vitro Tissue Culture, Regional Centre for Research in Oasis Agriculture, Tozeur Km1, Degueche 2260, Tunisia; (A.O.); (A.S.)
| | - Leen Leus
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium;
| | - Stefaan P. O. Werbrouck
- Department of Plant & Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
6
|
Fernández-Jiménez N, Martinez-Garcia M, Varas J, Gil-Dones F, Santos JL, Pradillo M. The scaffold nucleoporins SAR1 and SAR3 are essential for proper meiotic progression in Arabidopsis thaliana. Front Cell Dev Biol 2023; 11:1285695. [PMID: 38111849 PMCID: PMC10725928 DOI: 10.3389/fcell.2023.1285695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE), regulating macromolecule transport and physically interacting with chromatin. The NE undergoes dramatic breakdown and reformation during plant cell division. In addition, this structure has a specific meiotic function, anchoring and positioning telomeres to facilitate the pairing of homologous chromosomes. To elucidate a possible function of the structural components of the NPCs in meiosis, we have characterized several Arabidopsis lines with mutations in genes encoding nucleoporins belonging to the outer ring complex. Plants defective for either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3 (NUP96) present condensation abnormalities and SPO11-dependent chromosome fragmentation in a fraction of meiocytes, which is increased in the double mutant sar1 sar3. We also observed these meiotic defects in mutants deficient in the outer ring complex protein HOS1, but not in mutants affected in other components of this complex. Furthermore, our findings may suggest defects in the structure of NPCs in sar1 and a potential link between the meiotic role of this nucleoporin and a component of the RUBylation pathway. These results provide the first insights in plants into the role of nucleoporins in meiotic chromosome behavior.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Martinez-Garcia
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Félix Gil-Dones
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Luis Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Zhang Y, Lv M, Jiang H, Li H, Li R, Yang C, Huang Y, Zhou H, Mei Y, Gao J, Cao X. Mitotic defects lead to unreduced sperm formation in cdk1 -/- mutants. Int J Biol Macromol 2023:125171. [PMID: 37271265 DOI: 10.1016/j.ijbiomac.2023.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Unreduced gametes, that are important for species evolution and agricultural development, are generally believed to be formed by meiotic defects. However, we found that male diploid loach (Misgurnus anguillicaudatus) could produce not only haploid sperms, but also unreduced sperms, after cyclin-dependent kinase 1 gene (cdk1, one of the most important kinases in regulating cell mitosis) deletion. Observations on synaptonemal complexes of spermatocyte in prophase of meiosis and spermatogonia suggested that the number of chromosomes in some spermatogonia of cdk1-/- loach doubled, leading to unreduced diploid sperm production. Then, transcriptome analysis revealed aberrant expressions of some cell cycle-related genes (such as ppp1c and gadd45) in spermatogonia of cdk1-/- loach relative to wild-type loach. An in vitro and in vivo experiment further validated that Cdk1 deletion in diploid loach resulted in mitotic defects, leading to unreduced diploid sperm formation. In addition, we found that cdk1-/- zebrafish could also produce unreduced diploid sperms. This study provides important information on revealing the molecular mechanisms behind unreduced gamete formation through mitotic defects, and lays the foundation for a novel strategy for fish polyploidy creation by using cdk1 mutants to produce unreduced sperms, which can then be used to obtain polyploidy, proposed to benefit aquaculture.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Meiqi Lv
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanjun Jiang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Yang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
8
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Dvořák Tomaštíková E, Yang F, Mlynárová K, Hafidh S, Schořová Š, Kusová A, Pernisová M, Přerovská T, Klodová B, Honys D, Fajkus J, Pecinka A, Schrumpfová PP. RUVBL proteins are involved in plant gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:325-337. [PMID: 36752686 DOI: 10.1111/tpj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Fen Yang
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Kristína Mlynárová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
10
|
Gong X, Tian X, Xie H, Li Z. The structural maintenance of chromosomes 5 is a possible biomarker for individualized treatment of colorectal cancer. Cancer Med 2022; 12:3276-3287. [PMID: 35894836 PMCID: PMC9939147 DOI: 10.1002/cam4.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Although the understanding of resistance to oxaliplatin (OXA) chemotherapy in colorectal cancer (CRC) has been sought for many years, drug tolerance remains a major challenge for cancer therapy. Revealing the molecular mechanism of OXA resistance could help to explain the poor prognosis of patients. METHODS Gene expression omnibus (GEO) database was searched, GSE83129, which contains RNA profiling in metastatic CRC patients treated first-line with OXA, was chosen for the following analysis. Differential expressed genes (DEGs) between the adenocarcinoma and adjacent_normal team, respectively, in the OXA responders and no-responders were analyzed. The Gene Ontology (GO) and hub genes in the protein-protein interaction (PPI) network were used for the molecular mechanism of OXA resistance. Tumor-related databases were used for the clinical relevance of the structural maintenance of chromosomes 5 (SMC5) in CRC. The in vitro assays were used to detect the molecular function of SMC5 in CRC cells. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of the structural maintenance of chromosomes 5/6 (SMC5/6) complex components upon OXA and raltitrexed (RTX) treatment. CCK-8 was used to detect the cell viability of cells with different treatment. RESULTS SMC5 was downregulated in CRC tissues of OXA no-response patients. Lower expression of SMC5 was correlated with a poor prognosis in CRC patients, improved this gene expression, inhibited the CRC cell growth and invasion in vitro. Furthermore, SMC5 was downregulated upon OXA treatment in CRC cells, while RTX would reverse its expression, and the combination of these two drugs restored the SMC5 level to the normal situation. Finally, RTX treatment enhanced the OXA cytotoxicity. CONCLUSION SMC5 is a tumor suppressor, that low expression of this gene is benefit for the development of CRC. Combination treatment with RTX and OXA may be more suitable for those OXA no-responders with lower SMC5.
Collapse
Affiliation(s)
- Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human DiseasesSoutheast UniversityNanjingChina
| | - Xiaowei Tian
- General Surgery DepartmentQingdao Municipal Hospital affiliated to Qingdao UniversityQingdaoChina
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human DiseasesSoutheast UniversityNanjingChina
| | - Zhaoshui Li
- Qingdao Medical CollegeQingdao UniversityQingdaoChina
| |
Collapse
|
11
|
Xie L, Ke LZ, Lu XQ, Chen J, Zhang ZS. Exploiting Unreduced Gametes for Improving Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883470. [PMID: 35734261 PMCID: PMC9207335 DOI: 10.3389/fpls.2022.883470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 06/06/2023]
Abstract
The formation of gametes with somatic chromosome number or unreduced gametes (2n gametes) is an important process involved in the origin of polyploid plants in nature. Unreduced gametes are the result of meiotic mutations occurring during micro- and mega-sporogenesis. 2n gametes have been identified or artificially induced in a large number of plant species. Breeding of plants through 2n gametes can be advantageous because it combines genetic effects of polyploidy with meiotic recombination and sexual hybridization to produce tremendous genetic variation and heterosis. 2n gametes also occur in ornamental plants, but the potential of using 2n gametes in ornamental plant breeding has not been extensively exploited. Ornamental plants are primarily produced for their esthetic appearance and novelty, not for food and yield, and they can be readily propagated through vegetative means. Triploids, tetraploids, and plants with even higher ploidy levels produced through 2n gametes can be propagated through tissue culture to fix their phenotypes, thus leading to the development of new cultivars. In this review article, we intend to discuss the mechanisms underlying the formation of 2n gametes, techniques for 2n gamete identification, methods for enhancing 2n gamete formation, and the current status in the use of 2n gametes for development of novel ornamental plants. We believe that polyploidy breeding through 2n gametes represents a viable way of developing new cultivars, new species, and even new genera of ornamental plants.
Collapse
Affiliation(s)
- Li Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Li-zhen Ke
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiao-qi Lu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Zhi-sheng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Yang F, Pecinka A. Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction. Int J Mol Sci 2022; 23:ijms23094503. [PMID: 35562893 PMCID: PMC9099584 DOI: 10.3390/ijms23094503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Chromatin-based processes are essential for cellular functions. Structural maintenance of chromosomes (SMCs) are evolutionarily conserved molecular machines that organize chromosomes throughout the cell cycle, mediate chromosome compaction, promote DNA repair, or control sister chromatid attachment. The SMC5/6 complex is known for its pivotal role during the maintenance of genome stability. However, a dozen recent plant studies expanded the repertoire of SMC5/6 complex functions to the entire plant sexual reproductive phase. The SMC5/6 complex is essential in meiosis, where its activity must be precisely regulated to allow for normal meiocyte development. Initially, it is attenuated by the recombinase RAD51 to allow for efficient strand invasion by the meiosis-specific recombinase DMC1. At later stages, it is essential for the normal ratio of interfering and non-interfering crossovers, detoxifying aberrant joint molecules, preventing chromosome fragmentation, and ensuring normal chromosome/sister chromatid segregation. The latter meiotic defects lead to the production of diploid male gametes in Arabidopsis SMC5/6 complex mutants, increased seed abortion, and production of triploid offspring. The SMC5/6 complex is directly involved in controlling normal embryo and endosperm cell divisions, and pioneer studies show that the SMC5/6 complex is also important for seed development and normal plant growth in cereals.
Collapse
Affiliation(s)
- Fen Yang
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
13
|
Tatout C, Mougeot G, Parry G, Baroux C, Pradillo M, Evans D. The INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant Traits) Academy: a community resource for plant science. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1926-1933. [PMID: 35090020 PMCID: PMC8982392 DOI: 10.1093/jxb/erac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
This Community Resource paper introduces the range of materials developed by the INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant Traits) COST Action made available through the INDEPTH Academy. Recent rapid growth in understanding of the significance of epigenetic controls in plant and crop science has led to a need for shared, high-quality resources, standardization of protocols, and repositories for open access data. The INDEPTH Academy provides a range of masterclass tutorials, standardized protocols, and teaching webinars, together with a rapidly developing repository to support imaging and spatial analysis of the nucleus and deep learning for automated analysis. These resources were developed partly as a response to the COVID-19 pandemic, but also driven by needs and opportunities identified by the INDEPTH community of ~200 researchers in 80 laboratories from 32 countries. This community report outlines the resources produced and how they will be extended beyond the INDEPTH project, but also aims to encourage the wider community to engage with epigenetics and nuclear structure by accessing these resources.
Collapse
Affiliation(s)
- Christophe Tatout
- Université Clermont Auvergne, CNRS, INSERM, GReD Clermont-Ferrand, France
| | - Guillaume Mougeot
- Université Clermont Auvergne, CNRS, INSERM, GReD Clermont-Ferrand, France
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Geraint Parry
- GARNet, Department of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Arabidopsis Events UK, 13 Mayhurst Ave, Woking GU22 8DE, UK
| | - Célia Baroux
- Zürich-Basel Plant Science Center, Department for Plant and Microbial Biology, University of Zürich, Switzerland
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - David Evans
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
14
|
Da Ines O, Choi K, Pradillo M, Lambing C. Editorial: Meiotic Recombination and DNA Repair: New Approaches to Solve Old Questions in Model and Non-model Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:841402. [PMID: 35222496 PMCID: PMC8864129 DOI: 10.3389/fpls.2022.841402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Clermont-Ferrand, France
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mónica Pradillo
- Department of Genetics, Faculty of Biology, Physiology and Microbiology, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
15
|
The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genet 2021; 17:e1009830. [PMID: 34695110 PMCID: PMC8568144 DOI: 10.1371/journal.pgen.1009830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
The post-translational addition of SUMO plays essential roles in numerous eukaryotic processes including cell division, transcription, chromatin organization, DNA repair, and stress defense through its selective conjugation to numerous targets. One prominent plant SUMO ligase is METHYL METHANESULFONATE-SENSITIVE (MMS)-21/HIGH-PLOIDY (HPY)-2/NON-SMC-ELEMENT (NSE)-2, which has been connected genetically to development and endoreduplication. Here, we describe the potential functions of MMS21 through a collection of UniformMu and CRISPR/Cas9 mutants in maize (Zea mays) that display either seed lethality or substantially compromised pollen germination and seed/vegetative development. RNA-seq analyses of leaves, embryos, and endosperm from mms21 plants revealed a substantial dysregulation of the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves and altered accumulation of mRNAs associated with DNA repair and chromatin dynamics. Interaction studies demonstrated that MMS21 associates in the nucleus with the NSE4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex, with in vitro assays confirming that MMS21 will SUMOylate SMC5. Comet assays measuring genome integrity, sensitivity to DNA-damaging agents, and protein versus mRNA abundance comparisons implicated MMS21 in chromatin stability and transcriptional controls on proteome balance. Taken together, we propose that MMS21-directed SUMOylation of the SMC5/6 complex and other targets enables proper gene expression by influencing chromatin structure. The post-translational addition of SUMO to other proteins by the MMS21 SUMO ligase has been implicated in a plethora of biological processes in plants but the identit(ies) of its targets and the biological consequences of their modification remain poorly resolved. Here, we address this issue by characterizing a collection of maize mms21 mutants using genetic, biochemical, transcriptomic and proteomic approaches. Our results revealed that mms21 mutations substantially compromise pollen germination and seed/vegetative development, dysregulate the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves, increase DNA damage, and alter the proteome/transcriptome balance. Interaction studies showed that MMS21 associates in the nucleus with the NON-SMC-ELEMENT (NSE)-4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex responsible for DNA-damage repair and chromatin accessibility. Our data demonstrate that MMS21 is crucial for plant development likely through its maintenance of DNA repair, balanced transcription, and genome stability.
Collapse
|
16
|
Yang F, Fernández Jiménez N, Majka J, Pradillo M, Pecinka A. Structural Maintenance of Chromosomes 5/6 Complex Is Necessary for Tetraploid Genome Stability in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748252. [PMID: 34675953 PMCID: PMC8525318 DOI: 10.3389/fpls.2021.748252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 05/04/2023]
Abstract
Polyploidization is a common phenomenon in the evolution of flowering plants. However, only a few genes controlling polyploid genome stability, fitness, and reproductive success are known. Here, we studied the effects of loss-of-function mutations in NSE2 and NSE4A subunits of the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex in autotetraploid Arabidopsis thaliana plants. The diploid nse2 and nse4a plants show partially reduced fertility and produce about 10% triploid offspring with two paternal and one maternal genome copies. In contrast, the autotetraploid nse2 and nse4a plants were almost sterile and produced hexaploid and aneuploid progeny with the extra genome copies or chromosomes coming from both parents. In addition, tetraploid mutants had more severe meiotic defects, possibly due to the presence of four homologous chromosomes instead of two. Overall, our study suggests that the SMC5/6 complex is an important player in the maintenance of tetraploid genome stability and that autotetraploid Arabidopsis plants have a generally higher frequency of but also higher tolerance for aneuploidy compared to diploids.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Natural Sciences, Palacký University, Olomouc, Czechia
| | - Nadia Fernández Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Joanna Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Ales Pecinka,
| |
Collapse
|