1
|
Saharan K, Baral S, Gandhi S, Singh AK, Ghosh S, Das R, Nagaraj VA, Vasudevan D. Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum. J Biol Chem 2025; 301:108379. [PMID: 40049416 PMCID: PMC11993163 DOI: 10.1016/j.jbc.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
An organized regulation of gene expression and DNA replication is vital for the progression of the complex life cycle of Plasmodium falciparum (Pf), involving multiple hosts and various stages. These attributes rely on the dynamic architecture of chromatin governed by several factors, including histone chaperones. Nucleoplasmin class of histone chaperones perform histone chaperoning function and participate in various developmental processes in eukaryotes. Here, our crystal structure confirmed that Pf indeed possesses a nucleoplasmin isoform (PfNPM), and the N-terminal core domain (NTD) adopts the characteristic pentameric doughnut conformation. Furthermore, PfNPM exists as a pentamer in solution, and the N-terminal core domain exhibits thermal and chemical stability. PfNPM interacts individually with assembled H2A/H2B and H3/H4 with an equimolar stoichiometry, wherein the acidic tracts of PfNPM were found to be necessary for these interactions. Further, H3/H4 displays a higher binding affinity for PfNPM than H2A/H2B, potentially due to stronger electrostatic interactions. The interaction studies also suggested that H2A/H2B and H3/H4 might share the same binding site on the PfNPM distal face, wherein H3/H4 could substitute H2A/H2B due to a higher binding affinity. Intriguingly, PfNPM neither demonstrated direct interaction with the nucleosome core particles nor displayed nucleosome assembly function, suggesting it may not be directly associated with histone deposition on the parasite genomic DNA. Furthermore, our immunofluorescence results suggested that PfNPM predominantly localizes in the nucleus and exhibits expression only in the early blood stages, such as ring and trophozoite. Altogether, we provide the first report on the structural and functional characterization of PfNPM.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Somanath Baral
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Surajit Gandhi
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Ajit Kumar Singh
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Sourav Ghosh
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Rahul Das
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Viswanathan Arun Nagaraj
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Structural Biology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India.
| |
Collapse
|
2
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
3
|
Huang L, Guo H. Acetylation modification in the regulation of macroautophagy. ADVANCED BIOTECHNOLOGY 2024; 2:19. [PMID: 39883319 PMCID: PMC11740868 DOI: 10.1007/s44307-024-00027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 01/31/2025]
Abstract
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs). Among these PTMs, acetylation modification has emerged as a focal point in yeast and animal studies. It plays a pivotal role in autophagy by directly targeting core components within the central machinery of autophagy, including autophagy initiation, nucleation, phagophore expansion, and autophagosome maturation. Additionally, acetylation modulates autophagy at the transcriptional level by modifying histones and transcription factors. Despite its well-established significance in yeast and mammals, the role of acetylation in plant autophagy remains largely unexplored, and the precise regulatory mechanisms remain enigmatic. In this comprehensive review, we summarize the current understanding of the function and underlying mechanisms of acetylation in regulating autophagy across yeast, mammals, and plants. We particularly highlight recent advances in deciphering the impact of acetylation on plant autophagy. These insights not only provide valuable guidance but also inspire further scientific inquiries into the intricate role of acetylation in plant autophagy.
Collapse
Affiliation(s)
- Li Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Candela-Ferre J, Diego-Martin B, Pérez-Alemany J, Gallego-Bartolomé J. Mind the gap: Epigenetic regulation of chromatin accessibility in plants. PLANT PHYSIOLOGY 2024; 194:1998-2016. [PMID: 38236303 PMCID: PMC10980423 DOI: 10.1093/plphys/kiae024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Chromatin plays a crucial role in genome compaction and is fundamental for regulating multiple nuclear processes. Nucleosomes, the basic building blocks of chromatin, are central in regulating these processes, determining chromatin accessibility by limiting access to DNA for various proteins and acting as important signaling hubs. The association of histones with DNA in nucleosomes and the folding of chromatin into higher-order structures are strongly influenced by a variety of epigenetic marks, including DNA methylation, histone variants, and histone post-translational modifications. Additionally, a wide array of chaperones and ATP-dependent remodelers regulate various aspects of nucleosome biology, including assembly, deposition, and positioning. This review provides an overview of recent advances in our mechanistic understanding of how nucleosomes and chromatin organization are regulated by epigenetic marks and remodelers in plants. Furthermore, we present current technologies for profiling chromatin accessibility and organization.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| |
Collapse
|
5
|
Saharan K, Baral S, Shaikh NH, Vasudevan D. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. Curr Res Struct Biol 2024; 7:100136. [PMID: 38463934 PMCID: PMC10920125 DOI: 10.1016/j.crstbi.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/β arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Regional Centre for Biotechnology (RCB), Faridabad, 121001, India
| | - Somanath Baral
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Nausad Hossain Shaikh
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Structural Biology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
6
|
Cui X, Dard A, Reichheld JP, Zhou DX. Multifaceted functions of histone deacetylases in stress response. TRENDS IN PLANT SCIENCE 2023; 28:1245-1256. [PMID: 37394308 DOI: 10.1016/j.tplants.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Histone deacetylases (HDACs) are important chromatin regulators essential for plant tolerance to adverse environments. In addition to histone deacetylation and epigenetic regulation, HDACs deacetylate non-histone proteins and thereby regulate multiple pathways. Like other post-translational modifications (PTMs), acetylation/deacetylation is a reversible switch regulating different cellular processes in plants. Here, by focusing on results obtained in arabidopsis (Arabidopsis thaliana) and rice plants, we analyze the different aspects of HDAC functions and the underlying regulatory mechanisms in modulating plant responses to stress. We hypothesize that, in addition to epigenetic regulation of gene expression, HDACs can also control plant tolerance to stress by regulating transcription, translation, and metabolic activities and possibly assembly-disassembly of stress granules (SGs) through lysine deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, - 9052 Ghent, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
7
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
8
|
Otero S. HD-tuin proteins, the ugly ducklings of histone deacetylases. THE PLANT CELL 2022; 34:4669-4670. [PMID: 36137216 PMCID: PMC9709961 DOI: 10.1093/plcell/koac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Sofía Otero
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Science and Technology Office of the Congress of Deputies, Madrid, Spain
| |
Collapse
|