1
|
Chen Q, Zhou Y, Long L, Zhang L, Liao H. Comparative analyses of morphology and temporal floral organ transcriptome provide insights into the development of staminodes in Globba racemosa (Zingiberaceae). Biochem Biophys Res Commun 2025; 760:151690. [PMID: 40157289 DOI: 10.1016/j.bbrc.2025.151690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Staminode, the most conspicuous floral organ in Zingiberaceae, which greatly contributes to the ornamental value of flowers in this family. Meanwhile, staminode is a key innovation in Zingiberaceae, which is hypothesized to have originated from the fertile stamen. Previous morphological and gene expression analyses have provided evidence for this hypothesis. However, in Zingiberaceae, little is known about the gene expression dynamics of the staminode compared to other floral organs at transcriptomic level, and the molecular mechanisms underlying identity specification of the staminodes remain unresolved. In this study, by using G. racemosa, an ornamental plant in Zingiberaceae, we first traced the flower development of G. racemosa, with special attention to the development of the two types of staminodes (the labellum and the outer androecial member), to explore the morphological differences between staminodes and the fertile stamen. Then, by combining a full-length transcriptome and comparative transcriptome data from seven types of floral organs at four developmental stages, we identified candidate genes that are specifically, preferentially, or differentially expressed in the labellum and the outer androecial member compared to other floral organs. Using weighted gene co-expression network analysis (WGCNA), we further identified several modules that are significantly correlated with the labellum and the outer androecial member. Lastly, by examining the expression patterns of four well-known gene regulatory networks, which, according to previous studies, are presumed to be involved in the identity specification and morphogenesis of staminodes in Zingiberaceae, we found other potential regulators for the development of staminodes of G. racemosa. Notably, we found that on the one hand, the labellum and the outer androecial member shared some genes with the fertile stamen, providing evidence for the stamen origin of staminodes in Zingiberaceae; on the other hand, the labellum, outer androecial member, and petal also share many genes, explaining the morphological similarity among labellum, outer androecial member, and petal. Thus, in terms of regulatory mechanisms, the staminodes in G. racemosa may represent a complex of stamen and petal characteristics. In summary, our results offer valuable resources for further research on gene functions and lay the foundation for future analyses of the molecular mechanisms underlying staminode development in Zingiberaceae.
Collapse
Affiliation(s)
- Qiyi Chen
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Yu Zhou
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Lan Long
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Li Zhang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Hong Liao
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
2
|
Geng F, Zhang X, Ma J, Liu H, Ye H, Hao F, Liu M, Dang M, Zhou H, Li M, Zhao P. Genome Assembly and Winged Fruit Gene Regulation of Chinese Wingnut: Insights from Genomic and Transcriptomic Analyses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae087. [PMID: 39666952 PMCID: PMC12043009 DOI: 10.1093/gpbjnl/qzae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
The genomic basis and biology of winged fruit are interesting issues in ecological and evolutionary biology. Chinese wingnut (Pterocarya stenoptera) is an important horticultural and economic tree species in China. The genomic resources of this hardwood tree could advance the genomic studies of Juglandaceae species and elucidate their evolutionary relationships. Here, we reported a high-quality reference genome of P. stenoptera (N50 = 35.15 Mb) and performed a comparative genomic analysis across Juglandaceae species. Paralogous relationships among the 16 chromosomes of P. stenoptera revealed eight main duplications representing the subgenomes. Molecular dating suggested that the most recent common ancestor of P. stenoptera and Cyclocarya paliurus diverged from Juglans species around 56.7 million years ago (MYA). The expanded and contracted gene families were associated with cutin, suberine, and wax biosynthesis, cytochrome P450, and anthocyanin biosynthesis. We identified large inversion blocks between P. stenoptera and its relatives, which were enriched with genes involved in lipid biosynthesis and metabolism, as well as starch and sucrose metabolism. Whole-genome resequencing of 28 individuals revealed clearly phylogenetic clustering into three groups corresponding to Pterocarya macroptera, Pterocarya hupehensis, and P. stenoptera. Morphological and transcriptomic analyses showed that CAD, COMT, LOX, and MADS-box play important roles during the five developmental stages of wingnuts. This study highlights the evolutionary history of the P. stenoptera genome and supports P. stenoptera as an appropriate Juglandaceae model for studying winged fruits. Our findings provide a theoretical basis for understanding the evolution, development, and diversity of winged fruits in woody plants.
Collapse
Affiliation(s)
- Fangdong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fan Hao
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Miaoqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Sharma B, Pandher MK, Alcaraz Echeveste AQ, Bravo M, Romo RK, Ramirez SC. Comparative case study of evolutionary insights and floral complexity in key early-diverging eudicot Ranunculales models. FRONTIERS IN PLANT SCIENCE 2024; 15:1486301. [PMID: 39539296 PMCID: PMC11557424 DOI: 10.3389/fpls.2024.1486301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Famously referred to as "Darwin's abominable mystery," the rapid diversification of angiosperms over the last ~140 million years presents a fascinating enigma. This diversification is underpinned by complex genetic pathways that evolve and rewire to produce diverse and sometimes novel floral forms. Morphological innovations in flowers are shaped not only by genetics but also by evolutionary constraints and ecological dynamics. The importance of model organisms in addressing the long-standing scientific questions related to diverse floral forms cannot be overstated. In plant biology, Arabidopsis thaliana, a core eudicot, has emerged as a premier model system, with its genome being the first plant genome to be fully sequenced. Similarly, model systems derived from crop plants such as Oryza sativa (rice) and Zea mays (maize) have been invaluable, particularly for crop improvement. However, despite their substantial utility, these model systems have limitations, especially when it comes to exploring the evolution of diverse and novel floral forms. The order Ranunculales is the earliest-diverging lineage of eudicots, situated phylogenetically between core eudicots and monocots. This group is characterized by its exceptional floral diversity, showcasing a wide range of floral morphologies and adaptations that offer valuable insights into the evolutionary processes of flowering plants. Over the past two decades, the development of at least five model systems including, Aquilegia, Thalictrum, Nigella, Delphinium and Eschscholzia within the Ranunculales order has significantly advanced our understanding of floral evolution. This review highlights the conservation and divergence of floral organ identity programs observed among these models and discusses their importance in advancing research within the field. The review also delves into elaborate petal morphology observed in Aquilegia, Nigella, and Delphinium genera, and further discusses the contributions, limitations, and future research directions for Ranunculales model systems. Integrating these diverse models from the early-diverging eudicot order has enhanced our understanding of the complex evolutionary pathways that shape floral diversity in angiosperms, bridging the knowledge gaps essential for a comprehensive understanding of floral evolution.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic
University, Pomona, CA, United States
| | | | | | | | | | | |
Collapse
|
4
|
Li S, Fan J, Xue C, Shan H, Kong H. Spur development and evolution: An update. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102573. [PMID: 38896925 DOI: 10.1016/j.pbi.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Floral spurs, widely recognized as a classic example of key morphological and functional innovation and thought to have promoted the origin and adaptive evolution of many flowering plant lineages, have attracted the attention of researchers for centuries. Despite this, the mechanisms underlying the development and evolution of these structures remain poorly understood. Recent studies have discovered the phytohormones and transcription factor genes that play key roles in regulating patterns of cell division and cell expansion during spur morphogenesis. Spur morphogenesis was also found to be tightly linked with the programs specifying floral zygomorphy, floral organ identity determination, and nectary development. Independent origins and losses of spurs in different flowering plant lineages, therefore, may be attributed to changes in the spur program and/or its upstream ones.
Collapse
Affiliation(s)
- Shuixian Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhi Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Sharma B, Pandher MK, Alcaraz Echeveste AQ, Romo RK, Bravo M. Delphinium as a model for development and evolution of complex zygomorphic flowers. FRONTIERS IN PLANT SCIENCE 2024; 15:1453951. [PMID: 39224845 PMCID: PMC11366623 DOI: 10.3389/fpls.2024.1453951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The complex zygomorphic flowers of the early-diverging eudicot Delphinium provide an opportunity to explore intriguing evolutionary, developmental, and genetic questions. The dorsal perianth organs, consisting of a spurred sepal and the nectar-bearing spurred petal(s) in Delphinium, contribute to the dorso-ventralization and zygomorphic flower morphology. The seamless integration of the two or three dorsal petaloid spurred organs is considered a synorganization, and the resulting organ complex is referred to as a hyperorgan. The hyperorgan shows variability within the tribe due to variation in the number, size, and shape of the spurs. Research in recent decades within this tribe has enhanced our understanding of morphological evolution of flowers. More recently, functional studies using the RNAi approach of Virus-Induced Gene Silencing (VIGS) have unraveled interesting results highlighting the role of gene duplication in the functional diversification of organ identity and symmetry genes. Research in this early-diverging eudicot genus bridges the gaps in understanding the morphological innovations that are mostly studied in model grass and core eudicot clades. This first comprehensive review synthesizes eco-evo-devo research on Delphinium, developing a holistic understanding of recent advancements and establishing the genus as an exceptional model for addressing fundamental questions in developmental genetics, particularly in the evolution of complex flowers. This progress highlights Delphinium's significant potential for future studies in this field.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | | | | | | | | |
Collapse
|
6
|
Zhang P, Xie Y, Xie W, Li L, Zhang H, Duan X, Zhang R, Guo L. Roles of the APETALA3-3 ortholog in the petal identity specification and morphological differentiation in Delphinium anthriscifolium flowers. HORTICULTURE RESEARCH 2024; 11:uhae097. [PMID: 38855416 PMCID: PMC11161261 DOI: 10.1093/hr/uhae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
The genus Delphinium (Ranunculaceae) with its unique and highly complex floral structure is an ideal system to address some key questions in terms of morphological and evolutionary studies in flowers. In D. anthriscifolium, for example, the original eight petal primordia differentiate into three types at maturity (i.e., two dorsal spurred, two lateral flat, and four ventral reduced petals). The mechanisms underlying their identity determination and morphological differentiation remain unclear. Here, through a comprehensive approach combining digital gene expression (DGE) profiles, in situ hybridization, and virus-induced gene silencing (VIGS), we explore the role of the APETALLATA3-3 (AP3-3) ortholog in D. anthriscifolium. Our findings reveal that the DeanAP3-3 not only functions as a traditionally known petal identity gene but also plays a critical role in petal morphological differentiation. The DeanAP3-3 gene is expressed in all the petal primordia before their morphological differentiation at earlier stages, but shows a gradient expression level difference along the dorsventral floral axis, with higher expression level in the dorsal spurred petals, intermediate level in the lateral flat petals and lower level in the ventral reduced petals. VIGS experiments revealed that flowers with strong phenotypic changes showed a complete transformation of all the three types of petals into non-spurred sepals. However, in the flowers with moderate phenotypic changes, the transformation of spurred petals into flat petals is associated with moderate silencing of the DeanAP3-3 gene, suggesting a significant impact of expression level on petal morphological differentiation. This research also shed some insights into the role of changes in gene expression levels on morphological differentiation in plants.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Li Li
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
7
|
Becker A, Bachelier JB, Carrive L, Conde e Silva N, Damerval C, Del Rio C, Deveaux Y, Di Stilio VS, Gong Y, Jabbour F, Kramer EM, Nadot S, Pabón-Mora N, Wang W. A cornucopia of diversity-Ranunculales as a model lineage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1800-1822. [PMID: 38109712 PMCID: PMC10967251 DOI: 10.1093/jxb/erad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.
Collapse
Affiliation(s)
| | - Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Giessen, Germany
| | - Julien B Bachelier
- Institute of Biology/Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Laetitia Carrive
- Université de Rennes, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Cédric Del Rio
- CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - Sorbonne Université - CNRS, 43 Rue Buffon, 75005 Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | | | - Yan Gong
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie, Systématique et Evolution, Gif-sur-Yvette, France
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China and University of Chinese Academy of Sciences, Beijing, 100049China
| |
Collapse
|
8
|
Chan C. From the archives: evolutionary origins of Delphinieae flowers, pseudogenes, and the light-responsive localization of COP1. THE PLANT CELL 2024; 36:489-490. [PMID: 38096564 PMCID: PMC10896285 DOI: 10.1093/plcell/koad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Affiliation(s)
- Ching Chan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
9
|
Zhang H, Xue F, Guo L, Cheng J, Jabbour F, DuPasquier PE, Xie Y, Zhang P, Wu Y, Duan X, Kong H, Zhang R. The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae). Curr Biol 2024; 34:755-768.e4. [PMID: 38272029 DOI: 10.1016/j.cub.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.
Collapse
Affiliation(s)
- Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Xue
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | | | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijia Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoshan Duan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|