1
|
Adhikari PB, Liu X, Huang C, Mitsuda N, Notaguchi M, Kasahara RD. Transcription Factors behind MYB98 Regulation: What Does the Discovery of SaeM Suggest? PLANTS (BASEL, SWITZERLAND) 2024; 13:1007. [PMID: 38611536 PMCID: PMC11013860 DOI: 10.3390/plants13071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
MYB98 is master regulator of the molecular network involved in pollen tube attraction. Until recently, it was unclear how this gene exhibits exclusively synergid cell-specific expression in ovule. Our recent study has established that a 16-bp-long SaeM element is crucial for its synergid cell-specific expression in ovule, and an 84-bp-long fragment harboring SaeM is sufficient to drive the process. In this study, we have developed a workflow to predict functional roles of potential transcription factors (TFs) putatively binding to the promoter region, taking MYB98 promoter as a test subject. After sequential assessment of co-expression pattern, network analysis, and potential master regulator identification, we have proposed a multi-TF model for MYB98 regulation. Our study suggests that ANL2, GT-1, and their respective homologs could be direct regulators of MYB98 and indicates that TCP15, TCP16, FRS9, and HB34 are likely master regulators of the majority of the TFs involved in its regulation. Comprehensive studies in the future are expected to offer more insights into such propositions. Developed workflow can be used while designing similar regulome-related studies for any other species and genes.
Collapse
Affiliation(s)
- Prakash B. Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan;
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (C.H.)
| | - Chen Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (C.H.)
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan;
| | - Michitaka Notaguchi
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan;
| | - Ryushiro Dora Kasahara
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan;
| |
Collapse
|
2
|
Somssich M. From the archives: male-female communication, glue that keeps cells together, and a SUPERMAN for all flowering plants. THE PLANT CELL 2024; 36:795-796. [PMID: 38243577 PMCID: PMC10980338 DOI: 10.1093/plcell/koae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Marc Somssich
- Reviewing Editor, The Plant Cell, American Society of Plant Biologists
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| |
Collapse
|
3
|
Baillie AL, Sloan J, Qu LJ, Smith LM. Signalling between the sexes during pollen tube reception. TRENDS IN PLANT SCIENCE 2024; 29:343-354. [PMID: 37640641 DOI: 10.1016/j.tplants.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Plant reproduction is a complex, highly-coordinated process in which a single, male germ cell grows through the maternal reproductive tissues to reach and fertilise the egg cell. Focussing on Arabidopsis thaliana, we review signalling between male and female partners which is important throughout the pollen tube journey, especially during pollen tube reception at the ovule. Numerous receptor kinases and their coreceptors are implicated in signal perception in both the pollen tube and synergid cells at the ovule entrance, and several specific peptide and carbohydrate ligands for these receptors have recently been identified. Clarifying the interplay between these signals and the downstream responses they instigate presents a challenge for future research and may help to illuminate broader principles of plant cell-cell communication.
Collapse
Affiliation(s)
- Alice L Baillie
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jen Sloan
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa M Smith
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Ke M, Si H, Qi Y, Sun Y, El-Kassaby YA, Wu Z, Li S, Liu K, Yu H, Hu R, Li Y. Characterization of pollen tube development in distant hybridization of Chinese cork oak (Quercus variabilis L.). PLANTA 2023; 258:110. [PMID: 37910223 DOI: 10.1007/s00425-023-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
MAIN CONCLUSION This work mainly found that the stigma and style of Q. variabilis did not completely lose the specific recognition towards heterologous pollen, a fact which is different from previous studies. Quercus is the foundation species in the Northern Hemisphere, with extreme prevalence for interspecific hybridization. It is not yet entirely understood whether or how the pollen tube-female tissue interaction contributes to the "extensive hybridization" in oaks. Pollen storage conditions correlate with distant hybridization. We conducted hybridization experiments with Q. variabilis as female and Q. variabilis and Q. mongolica as male parents. And the differences in pollen tube (PT) development between intra- and distant interspecific hybridization were studied by fluorescence microscopy and scanning electron microscopy (SEM). Our results showed that -20 °C allowed pollen of both species to maintain some viability. Both Q. variabilis and Q. mongolica pollen germinated profusely on the stigmas. SEM results indicated that in the intraspecific hybridization, Q. variabilis pollen started to germinate at 6 h after pollination (hap), PTs elongated significantly at 12 hap, and entered the stigma at 24 hap. By contrast, Q. mongolica pollen germinated at 15 hap, and the PTs entered the stigma at 27 hap. By fluorescence microscopical studies it was observed that some PTs of Q. variabilis gathered at the style-joining at 96 hap, unlike the Q. mongolica which reached the style junction at 144 hap. The above results indicate that the abundant germination of heterologous pollen (HP) on the stigma and the "Feeble specificity recognition" of the stigma and transmitting tract to HP may create opportunities for the "extensive hybridization" of oaks. This work provides a sexual developmental reference for clarifying the causes of Quercus "extensive hybridization".
Collapse
Affiliation(s)
- Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huayu Si
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongliang Qi
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Zhiyong Wu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Shian Li
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Kelin Liu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Hai Yu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Ruiyang Hu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Ogawa ST, Kessler SA. Update on signaling pathways regulating polarized intercellular communication in Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 193:1732-1744. [PMID: 37453128 DOI: 10.1093/plphys/kiad414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Sienna T Ogawa
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|