1
|
Peng Y, Peng T, Chu Y, Yan W, Yao R, Wen X, Qiu Y, Wang M, Xiao Z, Zhang D, Chen X, Yin Z, Wang Y, Guo H. Arabidopsis HOOKLESS1 acts as a histone acetyltransferase to promote cotyledon greening during seedling de-etiolation. Proc Natl Acad Sci U S A 2025; 122:e2425647122. [PMID: 40434642 DOI: 10.1073/pnas.2425647122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Greening immediately after etiolated-seedling's emergence from the soil is critical for plants to initiate their autotrophic life cycle through photosynthesis. The greening process relies on a complex transcriptional network that fine-tunes the biosynthesis of chlorophyll and prevents premature development of chloroplasts. In this study, we identified the Arabidopsis HOOKLESS1 (HLS1) as a key regulator of light-induced cotyledon greening. Our results demonstrated that HLS1 is essential for the proper expression of greening-related genes controlling chlorophyll biosynthesis and chloroplast development. Loss of HLS1 severely disrupts the Pchlide-to-Chlide transition and impairs reactive oxygen species (ROS) scavenging in etiolated seedlings upon light exposure, leading to catastrophic ROS burst and even photobleaching. Biochemical assays revealed that HLS1 is a histone acetyltransferase mediating the deposition of H3K9ac and H3K27ac marks at multiple greening-related genes, thereby promoting their transcriptional activation. Genetic analysis further confirmed that HLS1's promotive effect on the greening process is fully dependent on its histone acetyltransferase activity. Moreover, the loss of HLS1 also interrupts the promotive effect of ethylene signaling on the greening process by reducing the binding of ETHYLENE-INSENSITIVE 3 to the promoter region of POR genes, thus inhibiting the activation effect of ethylene signaling on the expression of PORs. Collectively, our study reveals that HLS1 acetylates histones to activate greening-related genes, optimizing chlorophyll biosynthesis and chloroplast development during dark-to-light transition in seedlings.
Collapse
Affiliation(s)
- Yang Peng
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tao Peng
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yishan Chu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Runyi Yao
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Meng Wang
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhina Xiao
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Chen
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhujun Yin
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
3
|
Fu D, Song Y, Wu S, Peng Y, Ming Y, Li Z, Zhang X, Song W, Su Z, Gong Z, Yang S, Shi Y. Regulation of alternative splicing by CBF-mediated protein condensation in plant response to cold stress. NATURE PLANTS 2025; 11:505-517. [PMID: 40044940 DOI: 10.1038/s41477-025-01933-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2025] [Indexed: 03/23/2025]
Abstract
Cold acclimation is critical for the survival of plants in temperate regions under low temperatures, and C-REPEAT BINDING FACTORs (CBFs) are well established as key transcriptional factors that regulate this adaptive process by controlling the expression of cold-responsive genes. Here we demonstrate that CBFs are involved in modulating alternative splicing during cold acclimation through their interaction with subunits of the spliceosome complex. Under cold stress, CBF proteins accumulate and directly interact with SKI-INTERACTING PROTEIN (SKIP), a key component of the spliceosome, which positively regulates acquired freezing tolerance. This interaction facilitates the formation of SKIP nuclear condensates, which enhances the association between SKIP and specific cold-responsive transcripts, thereby increasing their splicing efficiency. Our findings uncover a regulatory role of CBFs in alternative splicing and highlight their pivotal involvement in the full development of cold acclimation, bridging transcriptional and post-transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Diyi Fu
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Song
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shifeng Wu
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Peng
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuhang Ming
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Lenzen B, Rösch F, Legen J, Ruwe H, Kachariya N, Sattler M, Small I, Schmitz-Linneweber C. The chloroplast RNA-binding protein CP29A supports rbcL expression during cold acclimation. Proc Natl Acad Sci U S A 2025; 122:e2403969122. [PMID: 39879235 PMCID: PMC11804644 DOI: 10.1073/pnas.2403969122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions. Low temperatures pose a challenge for plants as this leads to electron imbalances and oxidative damage. A well-known response of plants to this problem is to increase the production of RuBisCo and other Calvin Cycle enzymes in the cold, but how this is achieved is unclear. The chloroplast RBP CP29A has been shown to be essential for cold resistance in growing leaf tissue of Arabidopsis thaliana. Here, we examined CP29A-RNA interaction sites at nucleotide resolution. We found that CP29A preferentially binds to the 5'-untranslated region of rbcL, downstream of the binding site of the pentatricopeptide repeat protein MATURATION OF RBCL 1 (MRL1). MRL1 is an RBP known to be necessary for the accumulation of rbcL. In Arabidopsis mutants lacking CP29A, we were unable to observe significant effects on rbcL, possibly due to CP29A's restricted role in a limited number of cells at the base of leaves. In contrast, CRISPR/Cas9-induced mutants of tobacco NtCP29A exhibit cold-dependent photosynthetic deficiencies throughout the entire leaf blade. This is associated with a parallel reduction in rbcL mRNA and RbcL protein accumulation. Our work indicates that a chloroplast RNA-binding protein contributes to cold acclimation of RbcL production.
Collapse
Affiliation(s)
- Benjamin Lenzen
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Florian Rösch
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Julia Legen
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Nitin Kachariya
- Molecular Targets and Therapeutics Center, Helmholtz Munich, Institute of Structural Biology, Neuherberg85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University Munich School of Natural Sciences, Technical University of Munich, Garching85747, Germany
| | - Michael Sattler
- Molecular Targets and Therapeutics Center, Helmholtz Munich, Institute of Structural Biology, Neuherberg85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University Munich School of Natural Sciences, Technical University of Munich, Garching85747, Germany
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA6009, Australia
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| |
Collapse
|
5
|
Ries F, Gorlt J, Kaiser S, Scherer V, Seydel C, Nguyen S, Klingl A, Legen J, Schmitz-Linneweber C, Plaggenborg H, Ng JZY, Wiens D, Hochberg GKA, Räschle M, Möhlmann T, Scheuring D, Willmund F. A truncated variant of the ribosome-associated trigger factor specifically contributes to plant chloroplast ribosome biogenesis. Nat Commun 2025; 16:629. [PMID: 39805826 PMCID: PMC11731035 DOI: 10.1038/s41467-025-55813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain. Tig2 is widely present in green plants and appears to have acquired an entirely different task than co-translational nascent polypeptide folding. Tig2 deletion results in remarkable leaf developmental defects of cold-exposed Arabidopsis thaliana plants and specific defects in plastidic ribosomes. Our data indicate that Tig2 functions during ribosome biogenesis by promoting the maturation of the large subunit. We hypothesize that Tig2 binding to the ribosomal tunnel-exit surface aids protecting this sensitive surface during assembly. Tig2 illustrates a fascinating concept of how a chaperone domain evolved individually, serving a completely different molecular task.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jasmin Gorlt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Scherer
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Charlotte Seydel
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sandra Nguyen
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Julia Legen
- Molecular Genetics, Humboldt-University of Berlin, Berlin, Germany
| | | | - Hinrik Plaggenborg
- Molecular Plant Sciences & Synmikro, University of Marburg, Marburg, Germany
| | - Jediael Z Y Ng
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dennis Wiens
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- Evolution Biology & Synmikro, University of Marburg, Marburg, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Scheuring
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
- Molecular Plant Sciences & Synmikro, University of Marburg, Marburg, Germany.
| |
Collapse
|
6
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
7
|
Zhu Z, Trenner J, Delker C, Quint M. Tracing the Evolutionary History of the Temperature-Sensing Prion-like Domain in EARLY FLOWERING 3 Highlights the Uniqueness of AtELF3. Mol Biol Evol 2024; 41:msae205. [PMID: 39391982 PMCID: PMC11523139 DOI: 10.1093/molbev/msae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Plants have evolved mechanisms to anticipate and adjust their growth and development in response to environmental changes. Understanding the key regulators of plant performance is crucial to mitigate the negative influence of global climate change on crop production. EARLY FLOWERING 3 (ELF3) is one such regulator playing a critical role in the circadian clock and thermomorphogenesis. In Arabidopsis thaliana, ELF3 contains a prion-like domain (PrLD) that acts as a thermosensor, facilitating liquid-liquid phase separation at high ambient temperatures. To assess the conservation of this function across the plant kingdom, we traced the evolutionary emergence of ELF3, with a focus on the presence of PrLDs. We found that the PrLD, primarily influenced by the length of polyglutamine (polyQ) repeats, is most prominent in Brassicales. Analyzing 319 natural A. thaliana accessions, we confirmed the previously described wide range of polyQ length variation in AtELF3, but found it to be only weakly associated with geographic origin, climate conditions, and classic temperature-responsive phenotypes. Interestingly, similar polyQ length variation was not observed in several other investigated Bassicaceae species. Based on these findings, available prediction tools and limited experimental evidence, we conclude that the emergence of PrLD, and particularly polyQ length variation, is unlikely to be a key driver of environmental adaptation. Instead, it likely adds an additional layer to ELF3's role in thermomorphogenesis in A. thaliana, with its relevance in other species yet to be confirmed.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Chakraborty S. When the weather outside is frightful, let it condensate: How the phase separation of an RNA binding protein CP29A helps plants acclimatize to cold. THE PLANT CELL 2024; 36:2755-2756. [PMID: 38783750 PMCID: PMC11289630 DOI: 10.1093/plcell/koae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Sonhita Chakraborty
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
9
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|