1
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Catlin NS, Agha HI, Platts AE, Munasinghe M, Hirsch CN, Josephs EB. Structural Variants Contribute to Phenotypic Variation in Maize. Mol Ecol 2025:e17662. [PMID: 39945381 DOI: 10.1111/mec.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 02/19/2025]
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Husain I Agha
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Adrian E Platts
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Catlin NS, Agha HI, Platts AE, Munasinghe M, Hirsch CN, Josephs EB. Structural variants contribute to phenotypic variation in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599082. [PMID: 38948717 PMCID: PMC11212879 DOI: 10.1101/2024.06.14.599082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterizing SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and connecting this presence/absence SV variation to diverse traits and GxE interactions.
Collapse
Affiliation(s)
- Nathan S. Catlin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Husain I. Agha
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian E. Platts
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Emily B. Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024; 52:13094-13109. [PMID: 39470691 PMCID: PMC11602168 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
6
|
Zeng R, Zhang X, Song G, Lv Q, Li M, Fu D, Zhang Z, Gao L, Zhang S, Yang X, Tian F, Yang S, Shi Y. Genetic variation in the aquaporin TONOPLAST INTRINSIC PROTEIN 4;3 modulates maize cold tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3037-3050. [PMID: 39024420 PMCID: PMC11500999 DOI: 10.1111/pbi.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Cold stress is a major abiotic stress that threatens maize (Zea mays L.) production worldwide. Understanding the molecular mechanisms underlying cold tolerance is crucial for breeding resilient maize varieties. Tonoplast intrinsic proteins (TIPs) are a subfamily of aquaporins in plants. Here, we report that TIP family proteins are involved in maize cold tolerance. The expression of most TIP genes was responsive to cold stress. Overexpressing TIP2;1, TIP3;2 or TIP4;3 reduced the cold tolerance of maize seedlings, while loss-of-function mutants of TIP4;3 exhibited enhanced cold tolerance. Candidate gene-based association analysis revealed that a 328-bp transposon insertion in the promoter region of TIP4;3 was strongly associated with maize cold tolerance. This transposon insertion conferred cold tolerance by repressing TIP4;3 expression through increased methylation of its promoter region. Moreover, TIP4;3 was found to suppress stomatal closure and facilitate reactive oxygen species (ROS) accumulation under cold stress, thereby inhibiting the expression of cold-responsive genes, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1 (DREB1) genes and a subset of peroxidase genes, ultimately attenuating maize cold tolerance. This study thus elucidates the mechanism underlying TIP-mediated cold tolerance and identifies a favourable TIP4;3 allele as a potential genetic resource for breeding cold-tolerant maize varieties.
Collapse
Affiliation(s)
- Rong Zeng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Guangshu Song
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Qingxue Lv
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Minze Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Zhuo Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Lei Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Shuaisong Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Feng Tian
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Liang Z, Meng X, Schnable JC. A Transferable Machine Learning Framework for Predicting Transcriptional Responses of Genes Across Species. Methods Mol Biol 2023; 2698:361-379. [PMID: 37682485 DOI: 10.1007/978-1-0716-3354-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Leveraging existing resources in studied species to predict gene functions has the potential to rapidly expand understanding of annotated genes in other, less well-studied, species with assembled genomes. However, orthology is not a reliable predictor for the transcriptional responses of genes to stress. Machine learning methods can quantitatively estimate expression patterns and gene functions using known annotations and collections of features describing each gene. In this chapter, we describe a supervised machine learning framework to predict stress-responsive genes across species using only features derived from nucleotide sequences, using the example of cold stress-responsive genes in different Panicoid grass species.
Collapse
Affiliation(s)
- Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
8
|
Liang Z, Myers ZA, Petrella D, Engelhorn J, Hartwig T, Springer NM. Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biol 2022; 23:234. [PMID: 36345007 PMCID: PMC9639295 DOI: 10.1186/s13059-022-02807-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Many plant species exhibit genetic variation for coping with environmental stress. However, there are still limited approaches to effectively uncover the genomic region that regulates distinct responsive patterns of the gene across multiple varieties within the same species under abiotic stress. RESULTS By analyzing the transcriptomes of more than 100 maize inbreds, we reveal many cis- and trans-acting eQTLs that influence the expression response to heat stress. The cis-acting eQTLs in response to heat stress are identified in genes with differential responses to heat stress between genotypes as well as genes that are only expressed under heat stress. The cis-acting variants for heat stress-responsive expression likely result from distinct promoter activities, and the differential heat responses of the alleles are confirmed for selected genes using transient expression assays. Global footprinting of transcription factor binding is performed in control and heat stress conditions to document regions with heat-enriched transcription factor binding occupancies. CONCLUSIONS Footprints enriched near proximal regions of characterized heat-responsive genes in a large association panel can be utilized for prioritizing functional genomic regions that regulate genotype-specific responses under heat stress.
Collapse
Affiliation(s)
- Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dominic Petrella
- Department of Horticulture, University of Minnesota, Saint Paul, MN, 55108, USA
- Present address: Agricultural Technical Institute, The Ohio State University, Wooster, OH, 44691, USA
| | - Julia Engelhorn
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Heinrich-Heine University, 40225, Dusseldorf, Germany
| | - Thomas Hartwig
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Heinrich-Heine University, 40225, Dusseldorf, Germany
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Klein SP, Anderson SN. The evolution and function of transposons in epigenetic regulation in response to the environment. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102277. [PMID: 35961279 DOI: 10.1016/j.pbi.2022.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) make up a major proportion of plant genomes. Despite their prevalence genome-wide, TEs are often tossed aside as "junk DNA" since they rarely cause phenotypes, and epigenetic mechanisms silence TEs to prevent them from causing deleterious mutations through movement. While this bleak picture of TEs in genomes is true on average, a growing number of examples across many plant species point to TEs as drivers of phenotypic diversity and novel stress responses. Examples of TE-influenced phenotypes illustrate the many ways that novel transposition events can alter local gene expression and how this relates to potential variation in plant responses to environmental stress. Since TE families and insertions at the locus level lack evolutionary conservation, advancements in the field will require TE experts across diverse species to identify and utilize TE variation in their own systems as a means of crop improvement.
Collapse
Affiliation(s)
- Stephanie P Klein
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah N Anderson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|
11
|
Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics 2022; 23:144. [PMID: 35176993 PMCID: PMC8855596 DOI: 10.1186/s12864-022-08312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. Results In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08312-2.
Collapse
|
12
|
Chen Z, Galli M, Gallavotti A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102134. [PMID: 34749068 DOI: 10.1016/j.pbi.2021.102134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a major environmental factor affecting the development and productivity of crop species. The ability to cope with periods of high temperatures, also known as thermotolerance, is becoming an increasingly indispensable trait for the future of agriculture owing to the current trajectory of average global temperatures. From temperature sensing to downstream transcriptional changes, here, we review recent findings involving the thermal regulation of plant growth and the effects of heat on hormonal pathways, reactive oxygen species, and epigenetic regulation. We also highlight recent approaches and strategies that could be integrated to confront the challenges in sustaining crop productivity in future decades.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
13
|
Qiu Y, O’Connor CH, Della Coletta R, Renk JS, Monnahan PJ, Noshay JM, Liang Z, Gilbert A, Anderson SN, McGaugh SE, Springer NM, Hirsch CN. Whole-genome variation of transposable element insertions in a maize diversity panel. G3 (BETHESDA, MD.) 2021; 11:jkab238. [PMID: 34568911 PMCID: PMC8473971 DOI: 10.1093/g3journal/jkab238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs, Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.
Collapse
Affiliation(s)
- Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Christine H O’Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Jonathan S Renk
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Patrick J Monnahan
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Amanda Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Abstract
The same gene is often regulated differently in response to stress in even closely related plant species. Directly measuring stress-responsive gene expression can be financially and logistically challenging in nonmodel species. Here, we show that models trained using data on which genes respond to cold in one species can predict which genes will respond to cold in related species, even when the training and target species vary in their degree of tolerance to cold. The prediction models we used require only genomic sequence and gene models. As a result, data from well-studied model species may be used to predict which genes will respond to stress in less-studied species with sequenced genomes. Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.
Collapse
|
15
|
Noshay JM, Liang Z, Zhou P, Crisp PA, Marand AP, Hirsch CN, Schmitz RJ, Springer NM. Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3 (BETHESDA, MD.) 2021; 11:6288454. [PMID: 34849810 PMCID: PMC8496265 DOI: 10.1093/g3journal/jkab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter A Crisp
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|