1
|
Jaiswal V, Rawoof A, Gahlaut V, Ahmad I, Chhapekar SS, Dubey M, Ramchiary N. Integrated analysis of DNA methylation, transcriptome, and global metabolites in interspecific heterotic Capsicum F 1 hybrid. iScience 2022; 25:105318. [PMID: 36304106 PMCID: PMC9593261 DOI: 10.1016/j.isci.2022.105318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Hybrid breeding is one of the efficacious methods of crop improvement. Here, we report our work towards understanding the molecular basis of F1 hybrid heterosis from Capsicum chinense and C. frutescens cross. Bisulfite sequencing identified a total of 70597 CG, 108797 CHG, and 38418 CHH differentially methylated regions (DMRs) across F1 hybrid and parents, and of these, 4891 DMRs showed higher methylation in F1 compared to the mid-parental methylation values (MPMV). Transcriptome analysis showed higher expression of 46–55% differentially expressed genes (DE-Gs) in the F1 hybrid. The qRT-PCR analysis of 24 DE-Gs with negative promoter methylation revealed 91.66% expression similarity with the transcriptome data. A few metabolites and 65–72% enriched genes in metabolite biosynthetic pathways showed overall increased expression in the F1 hybrid compared to parents. These findings, taken together, provided insights into the integrated role of DNA methylation, and genes and metabolites expression in the manifestation of heterosis in Capsicum. Global methylation identified significantly different proportions of mCs in hybrid Of common DMRs, 33.08% showed different methylation in hybrid from the mid-parental value Negatively correlated DEG pDMR-genes were enriched in metabolic pathways Significant higher expression of metabolites and DE-Gs were identified in the F1 hybrid
Collapse
Affiliation(s)
- Vandana Jaiswal
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Corresponding author
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil S. Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Horticulture, Chungnam National University, Daejeon 34134, South Korea
| | - Meenakshi Dubey
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author
| |
Collapse
|