1
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
2
|
Song W, Sun T, Xin R, Li X, Zhao Q, Guan S, Kan M, Zhou X, Sun X, Yang P. PlZAT10 binds to the ABA catabolism gene PlCYP707A2 promoter to mediate seed dormancy release in Paeonia lactiflora. PLANT CELL REPORTS 2024; 43:276. [PMID: 39520557 DOI: 10.1007/s00299-024-03363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE PlZAT10-PlCYP707A2 module promotes Paeonia lactiflora seeds germination. The herbaceous peony (Paeonia lactiflora) seeds exhibit double dormancy in the epicotyl and hypocotyl, which significantly inhibits the process of cultivation and breeding of new varieties. Nevertheless, the molecular mechanism underlying seed dormancy release in P. lactiflora remains to be fully identified. In this current study, we analyzed differentially expressed genes based on transcriptome data and selected the abscisic acid catabolic gene PlCYP707A2 for further investigation. The conserved domain of the protein indicated that PlCYP707A2 possessed a cytochrome P450 monooxygenase domain. Subcellular localization indicated that PlCYP707A2 was localized on the cytoplasm and cell membrane. Overexpression of PlCYP707A2 in P. lactiflora seeds decreased ABA contents and promoted seeds germination. The silencing of PlCYP707A2 resulted in seed dormancy and an alteration in the content of ABA. Moreover, yeast one-hybrid, electrophoretic mobility shift and dual-luciferase reporter assay revealed that PlZAT10 bound to the promoter of PlCYP707A2. In conclusion, the results demonstrated the mechanism of the PlZAT10-PlCYP707A2 module in regulating the dormancy release of P. lactiflora seeds, enriching relevant theories on seed dormancy and having significant implications for the herbaceous peony industry developing.
Collapse
Affiliation(s)
- Wenhui Song
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Tianyi Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xueting Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Qingwen Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Ming Kan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaoqing Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
4
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Abstract
Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'β directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.
Collapse
|
6
|
Dolui D, Hasanuzzaman M, Saha I, Ghosh A, Adak MK. Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9232-9247. [PMID: 34495473 DOI: 10.1007/s11356-021-16246-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Sodium (Na) and arsenic (As) toxicity were monitored by hyperaccumulation of metals in Salvinia natans L. with 2,4-dichlorophenoxyacetic acid (2,4-D) induction. Salvinia was recorded with significant bioaccumulation of those metals with de-folding of cellular attributes in sustenance under toxic environment. 2,4-D priming has revised the growth components like net assimilation rate and relative water content to register initial plants' survival against Na and As. Proline biosynthesis supported in the maintenance of osmotic adjustment and plants sustained better activity through subdued electrolytic leakage. Oxidative stress due to both Na and As exposure is responsible for induction under significant moderation of lipid peroxidation and protein carbonization by 2,4-D application was evident to release the stress from metal and metalloids. Reactive oxygen species (ROS) like superoxide and hydrogen peroxide accumulation were monitored with activity of NADP(H)-oxidase. However, it was downregulated by 2,4-D to check the oxidative damages. Superoxide dismutase and peroxidases were significantly moderated to reduce the oxidative degradation for both metals with 2,4-D induction. Glutathione metabolism and recycling of ascorbate with monodehydroascorbate activity were other features to maintain the redox homeostasis for metal toxicity. At the molecular level, polymorphic variations of concern genes in redox cascades demarked significantly for those two metals and established the biomarker for those metals, respectively. As a whole, the biocompatibility of auxin herbicide in Salvinia may raise the possibility for auxin metabolism and thereby, the bioaccumulation to Na and As vis-à-vis tolerance for ecological safety is established.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Indraneel Saha
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Arijit Ghosh
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Malay Kumar Adak
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India.
| |
Collapse
|