1
|
Nemoto K. Applications of the wheat germ cell-free protein synthesis system in plant biochemical studies. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:325-334. [PMID: 40083572 PMCID: PMC11897732 DOI: 10.5511/plantbiotechnology.24.0501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 03/16/2025]
Abstract
The development of cell-free protein synthesis technology has made it possible to easily and quickly synthesize recombinant proteins. Among cell-free protein synthesis systems, wheat germ cell-free protein synthesis using eukaryotic ribosomes is an efficient approach to synthesize proteins with diverse and complex structures and functions. However, to date, cell-free protein synthesis systems, including wheat germ cell-free systems, have not been widely used in plant research, and little is known about their applications. Here, I first introduce a basic overview of the cell-free protein synthesis system of wheat germ. Next, I will focus on our previous research examples on plants and present the applications in which the wheat germ cell-free system is used. We provide protein expression and protein function screening methods at the semi-genomic level and also introduce new approaches to enhance study of chemical biology by adapting the cell-free system of wheat germ. With this review, I would like to highlight the potential of the wheat germ cell-free system and position it as a widely used tool for the previously difficult task of recombinant protein preparation and functional analysis.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
2
|
Dong J, Yu XH, Dong J, Wang GH, Wang XL, Wang DW, Yan YC, Xiao H, Ye BQ, Lin HY, Yang GF. An artificially evolved gene for herbicide-resistant rice breeding. Proc Natl Acad Sci U S A 2024; 121:e2407285121. [PMID: 39133859 PMCID: PMC11348328 DOI: 10.1073/pnas.2407285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024] Open
Abstract
Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many β-triketone herbicides (β-THs). The crystal structures of maize HSL1A complexed with β-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying β-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to β-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Xin-He Yu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan430061, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan430065, People’s Republic of China
| | - Gao-Hua Wang
- Edgene Biotechnology Co., Ltd., Wuhan430074, People’s Republic of China
| | - Xin-Long Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Da-Wei Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Yao-Chao Yan
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Han Xiao
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Bao-Qin Ye
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| |
Collapse
|
3
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
4
|
Tan Q, Chen W, Liu H, Yan W, Huang X, Li Y. The programmed sequence-based oxygenase screening for polypropylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133173. [PMID: 38061126 DOI: 10.1016/j.jhazmat.2023.133173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Enzymatic degradation of plastic is an effective means of plastic recycling and pollution control. However, the strong chemical inertness of polypropylene plastic (PP) severely impedes its oxidative cleavage, making it resistant to degradation. In this study, based on sequence screening of Hidden Markov Model (HMM), a dioxygenase (HIS1) was identified and characterized to be effective in PP oxidation. Various kinds of PP products, including plastic films, microplastics, and disposable water cups or bags, were HIS1-degraded with cracks and holes on the surface. The hydrophobic binding was the primary force driving oxidative degradation in the specific cavity of HIS1. The discovery of HIS1 achieved a zero breakthrough in PP biodegradation, providing a promising candidate for the selection and evolution of degrading enzymes.
Collapse
Affiliation(s)
- Qianlong Tan
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Wentao Chen
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Hong Liu
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Wende Yan
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Xiu Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Li
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Yoda A, Xie X, Yoneyama K, Miura K, McErlean CSP, Nomura T. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum. PLANT & CELL PHYSIOLOGY 2023; 64:1034-1045. [PMID: 37307421 PMCID: PMC10504574 DOI: 10.1093/pcp/pcad060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
Seeds of root parasitic plants, Striga, Orobanche and Phelipanche spp., are induced to germinate by strigolactones (SLs) exudated from host roots. In Striga-resistant cultivars of Sorghum bicolor, the loss-of-function of the Low Germination Stimulant 1 (LGS1) gene changes the major SL from 5-deoxystrigol (5DS) to orobanchol, which has an opposite C-ring stereochemistry. The biosynthetic pathway of 5DS catalyzed by LGS1 has not been fully elucidated. Since other unknown regulators, in addition to LGS1 encoding a sulfotransferase, appear to be necessary for the stereoselective biosynthesis of 5DS, we examined Sobic.005G213500 (Sb3500), encoding a 2-oxoglutarate-dependent dioxygenase, as a candidate regulator, which is co-expressed with LGS1 and located 5'-upstream of LGS1 in the sorghum genome. When LGS1 was expressed with known SL biosynthetic enzyme genes including the cytochrome P450 SbMAX1a in Nicotiana benthamiana leaves, 5DS and its diastereomer 4-deoxyorobanchol (4DO) were produced in approximately equal amounts, while the production of 5DS was significantly larger than that of 4DO when Sb3500 was also co-expressed. We also confirmed the stereoselective 5DS production in an in vitro feeding experiment using synthetic chemicals with recombinant proteins expressed in Escherichia coli and yeast. This finding demonstrates that Sb3500 is a stereoselective regulator in the conversion of the SL precursor carlactone to 5DS, catalyzed by LGS1 and SbMAX1a, providing a detailed understanding of how different SLs are produced to combat parasitic weed infestations.
Collapse
Affiliation(s)
- Akiyoshi Yoda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Research and Development Bureau, Saitama University, Saitama-shi, Saitama, 338-8570 Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | | | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| |
Collapse
|
6
|
Wang J, Li Y, Wang Y, Du F, Zhang Y, Yin M, Zhao X, Xu J, Yang Y, Wang W, Fu B. Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin. Antioxidants (Basel) 2022; 11:antiox11102045. [PMID: 36290768 PMCID: PMC9598814 DOI: 10.3390/antiox11102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)–scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, China Agricultural University, Beijing 100193, China
| | - Yingbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinxiao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqing Yang
- College of Life Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| |
Collapse
|