1
|
Liang H, Xu Y, Sahu SK, Wang H, Li L, Chen X, Zeng Y, Lorenz M, Friedl T, Melkonian B, Wong GKS, Melkonian M, Liu H, Wang S. Chromosome-level genomes of two Bracteacoccaceae highlight adaptations to biocrusts. Nat Commun 2025; 16:1492. [PMID: 39929813 PMCID: PMC11811186 DOI: 10.1038/s41467-025-56614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Biological soil crusts (biocrusts) cover the majority of the world's dryland ground and are a significant component of the vegetation-free surface of the planet. They consist of an intimate association of microbial organisms, lichens, bryophytes and fungi. Biocrusts are severely endangered by anthropogenic disturbances despite their importance. The genus Bracteacoccus (Sphaeropleales, Chlorophyta) is a ubiquitous component of biocrusts from extreme environments. Here, we present the chromosome-level genome sequences of two Bracteacoccus species, B. bullatus and B. minor. Genome comparisons with other Archaeplastida identify genomic features that highlight the adaptation of these algae to abiotic stresses prevailing in such environments. These features include horizontal gene transfer events mainly from bacteria or fungi, gains and expansions of stress-related gene families, neofunctionalization of genes following gene duplications and genome structural variations. We also summarize transcriptional and metabolic responses of the lipid pathway of B. minor, based on multi-omics analyses, which is important for balancing the flexible conversion of polar membrane lipids and non-polar storage lipids to cope with various abiotic stresses. Under dehydration and high-temperature stress conditions B. minor differs considerably from other eukaryotic algae. Overall, these findings provide insights into the genetic basis of adaptation to abiotic stress in biocrust algae.
Collapse
Affiliation(s)
- Hongping Liang
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xu
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Hongli Wang
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Linzhou Li
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Xiayi Chen
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Zeng
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maike Lorenz
- Department 'Experimentelle Phykologie und Sammlung von Algenkulturen', University of Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Thomas Friedl
- Department 'Experimentelle Phykologie und Sammlung von Algenkulturen', University of Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Barbara Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sibo Wang
- BGI Research, Wuhan, 430074, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
2
|
Qiao P, Zhao M, Zhao J, Wen J, Zhao C, Zhang M. Unveiling the camelina MBOAT gene family: Phylogenetic insights and regulatory landscape. Gene 2025; 936:149085. [PMID: 39542282 DOI: 10.1016/j.gene.2024.149085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The membrane-bound O-acyltransferase (MBOAT) gene family comprises enzymes responsible for transferring acyl groups to various lipid molecules. Some members of the MBOAT gene family and their functions have been extensively studied in the model plant Arabidopsis. However, research on the MBOAT gene family in camelina is still limited. In this study, 54 MBOATs were identified on 17 chromosomes and one unidentified scaffold in camelina, including seven newly identified genes. A total of 149 MBOATs were identified in 10 other species. Six subgroups of these MBOATs with different conservation were classified by phylogenetic analysis, showing diversification between monocots and dicots. Detailed analysis of the motif composition, evolutionary relationships, and gene structures of CsaMBOATs are presented. The results of the syntenic analysis suggest that the evolution of CsaMBOAT gene family is primarily driven by segmental and tandem duplications, and that there is a stronger collinearity within dicots. In addition, analysis of CsaMBOAT gene promoter cis-elements reveals a possible transcriptional regulation and tissue-specific expression, highlighting potential role in plant stress responses and hormone signaling. Furthermore, both the transcriptome and RT-qPCR data revealed the changes in the expression levels of DGAT1 during salt stress treatment. Subsequent analyses indicated that DGAT1 influenced the ratio of fatty acid fractions in the plants. Importantly, a large number of transcription factors involved in the regulation of CsaMBOAT gene expression were identified by WGCNA analysis, and the transcriptional data confirmed that the NAC032 and CAMMTA6 genes play a role upstream of DGAT1. This study not only identified the members of the MBOAT in camelina, but also provided insights and clues into its regulatory mechanisms.
Collapse
Affiliation(s)
- Pengfang Qiao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maoqiu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialiang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayin Wen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
5
|
Guéguen N, Sérès Y, Cicéron F, Gros V, Si Larbi G, Falconet D, Deragon E, Gueye SD, Le Moigne D, Schilling M, Cussac M, Petroutsos D, Hu H, Gong Y, Michaud M, Jouhet J, Salvaing J, Amato A, Maréchal E. Monogalactosyldiacylglycerol synthase isoforms play diverse roles inside and outside the diatom plastid. THE PLANT CELL 2024; 36:koae275. [PMID: 39383259 PMCID: PMC11638560 DOI: 10.1093/plcell/koae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Diatoms derive from a secondary endosymbiosis event, which occurred when a eukaryotic host cell engulfed a red alga. This led to the formation of a complex plastid enclosed by four membranes: two innermost membranes originating from the red alga chloroplast envelope, and two additional peri- and epiplastidial membranes (PPM, EpM). The EpM is linked to the endoplasmic reticulum (ER). The most abundant membrane lipid in diatoms is monogalactosyldiacylglycerol (MGDG), synthesized by galactosyltransferases called MGDG synthases (MGDs), conserved in photosynthetic eukaryotes and considered to be specific to chloroplast membranes. Similar to angiosperms, a multigenic family of MGDs has evolved in diatoms, but through an independent process. We characterized MGDα, MGDβ and MGDγ in Phaeodactylum tricornutum, combining molecular analyses, heterologous expression in Saccharomyces cerevisiae, and studying overexpressing and CRISPR-Cas9-edited lines. MGDα localizes mainly to thylakoids, MGDβ to the PPM, and MGDγ to the ER and EpM. MGDs have distinct specificities for diacylglycerol, consistent with their localization. Results suggest that MGDα is required for thylakoid expansion under optimal conditions, while MGDβ and MGDγ play roles in plastid and non-plastid membranes and in response to environmental stress. Functional compensation among MGDs likely contributes to diatom resilience under adverse conditions and to their ecological success.
Collapse
Affiliation(s)
- Nolwenn Guéguen
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Yannick Sérès
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Félix Cicéron
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Grégory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Etienne Deragon
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Siraba D Gueye
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Damien Le Moigne
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Marion Schilling
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Mathilde Cussac
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
6
|
Gu X, Shi Y, Luo C, Cheng J. Establishment of Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:111. [PMID: 39129014 PMCID: PMC11318150 DOI: 10.1186/s13068-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.
Collapse
Affiliation(s)
- Xiaosong Gu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hubei Province Key Lab Yeast Function, Yichang, 443003, China
| | - Yumei Shi
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China
| | - Changxin Luo
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China.
| | - Jintao Cheng
- Xianghu Laboratory, Hangzhou, 310027, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
8
|
Kong F, Blot C, Liu K, Kim M, Li-Beisson Y. Advances in algal lipid metabolism and their use to improve oil content. Curr Opin Biotechnol 2024; 87:103130. [PMID: 38579630 DOI: 10.1016/j.copbio.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Microalgae are eukaryotic photosynthetic micro-organisms that convert CO2 into carbohydrates, lipids, and other valuable metabolites. They are considered promising chassis for the production of various bioproducts, including fatty acid-derived biofuels. However, algae-based biofuels are not yet commercially available, mainly because of their low yields and high production cost. Optimizing strains to improve lipid productivity using the principles of synthetic biology should help move forward. This necessitates developments in the following areas: (1) identification of molecular bricks (enzymes, transcription factors, regulatory proteins etc.); (2) development of genetic tools; and (3) availability of high-throughput phenotyping methods. Here, we highlight the most recent developments in some of these areas and provide examples of the use of genome editing tools to improve oil content.
Collapse
Affiliation(s)
- Fantao Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Carla Blot
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Keqing Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Minjae Kim
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| |
Collapse
|
9
|
Li S, Hui L, Li J, Xi Y, Xu J, Wang L, Yin L. OsMGD1-Mediated Membrane Lipid Remodeling Improves Salt Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1474. [PMID: 38891283 PMCID: PMC11174947 DOI: 10.3390/plants13111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Salt stress severely reduces photosynthetic efficiency, resulting in adverse effects on crop growth and yield production. Two key thylakoid membrane lipid components, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were perturbed under salt stress. MGDG synthase 1 (MGD1) is one of the key enzymes for the synthesis of these galactolipids. To investigate the function of OsMGD1 in response to salt stress, the OsMGD1 overexpression (OE) and RNA interference (Ri) rice lines, and a wild type (WT), were used. Compared with WT, the OE lines showed higher chlorophyll content and biomass under salt stress. Besides this, the OE plants showed improved photosynthetic performance, including light absorption, energy transfer, and carbon fixation. Notably, the net photosynthetic rate and effective quantum yield of photosystem II in the OE lines increased by 27.5% and 25.8%, respectively, compared to the WT. Further analysis showed that the overexpression of OsMGD1 alleviated the negative effects of salt stress on photosynthetic membranes and oxidative defense by adjusting membrane lipid composition and fatty acid levels. In summary, OsMGD1-mediated membrane lipid remodeling enhanced salt tolerance in rice by maintaining membrane stability and optimizing photosynthetic efficiency.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lei Hui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jingchong Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Xianyang 712100, China;
| | - Yuan Xi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jili Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linglong Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang 712100, China; (S.L.); (L.H.); (Y.X.); (J.X.)
- Institute of Soil and Water Conservation, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Xianyang 712100, China;
| |
Collapse
|
10
|
Makay K, Griehl C, Grewe C. Development of a high-performance thin-layer chromatography-based method for targeted glycerolipidome profiling of microalgae. Anal Bioanal Chem 2024; 416:1149-1164. [PMID: 38172195 PMCID: PMC10850188 DOI: 10.1007/s00216-023-05101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The conditionally essential very-long-chain polyunsaturated fatty acids (VLC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5 n-3), play a vital role in human nutrition. Their biological activity is thereby greatly influenced by the distinct glycerolipid molecule that they are esterified to. Here, microalgae differ from the conventional source, fish oil, both in quantity and distribution of VLC-PUFAs among the glycerolipidome. Therefore, the aim of this study was to develop a fast and reliable one-dimensional high-performance thin-layer chromatography (HPTLC)-based method that allows the separation and quantification of the main microalgal glycerolipid classes (e.g., monogalactosyldiacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG), phosphatidylglycerol (PG)), as well as the subsequent analysis of their respective fatty acid distribution via gas chromatography (GC) coupled to mass spectrometry (MS). Following optimization, method validation was carried out for 13 different lipid classes, based on the International Conference on Harmonization (ICH) guidelines. In HPTLC, linearity was effective between 100 and 2100 ng, with a limit of quantification between 62.99 and 90.09 ng depending on the glycerolipid class, with strong correlation coefficients (R2 > 0.995). The recovery varied between 93.17 and 108.12%, while the inter-day precision measurements showed coefficients of variation of less than 8.85%, close to the limit of detection. Applying this method to crude lipid extracts of four EPA producing microalgae of commercial interest, the content of different glycerolipid classes was assessed together with the respective FA distribution subsequent to band elution. The results showed that the described precise and accurate HPTLC method offers the possibility to be used routinely to follow variations in the glycerolipid class levels throughout strain screening, cultivation, or bioprocessing. Thus, additional quantitative analytical information on the complex lipidome of microalgae can be obtained, especially for n-3 and n-6 enriched lipid fractions.
Collapse
Affiliation(s)
- Kolos Makay
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Claudia Grewe
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany.
| |
Collapse
|
11
|
Lu H, Liu K, Zhang H, Xie X, Ge Y, Chi Z, Xue S, Kong F, Ohama T. Enhanced triacyclglycerols and starch synthesis in Chlamydomonas stimulated by the engineered biodegradable nanoparticles. Appl Microbiol Biotechnol 2023; 107:971-983. [PMID: 36622426 DOI: 10.1007/s00253-023-12366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.
Collapse
Affiliation(s)
- Han Lu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Keqing Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hao Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xi Xie
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Yunlong Ge
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-City, 782-8502, Japan
| |
Collapse
|
12
|
Hoffmann DY, Shachar-Hill Y. Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae? FRONTIERS IN PLANT SCIENCE 2023; 14:1077347. [PMID: 36743481 PMCID: PMC9892843 DOI: 10.3389/fpls.2023.1077347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Acyl editing refers to a deacylation and reacylation cycle on a lipid, which allows for fatty acid desaturation and modification prior to being removed and incorporated into other pools. Acyl editing is an important determinant of glycerolipid synthesis and has been well-characterized in land plants, thus this review begins with an overview of acyl editing in plants. Much less is known about acyl editing in algae, including the extent to which acyl editing impacts lipid synthesis and on which lipid substrate(s) it occurs. This review compares what is known about acyl editing on its major hub phosphatidylcholine (PC) in land plants with the evidence for acyl editing of betaine lipids such as diacylglyceryltrimethylhomoserine (DGTS), the structural analog that replaces PC in several species of microalgae. In land plants, PC is also known to be a major source of fatty acids and diacylglycerol (DAG) for synthesis of the neutral lipid triacylglycerol (TAG). We review the evidence that DGTS contributes substantially to TAG accumulation in algae as a source of fatty acids, but not as a precursor to DAG. We conclude with evidence of acyl editing on other membrane lipid substrates in plants and algae apart from PC or DGTS, and discuss future analyses to elucidate the role of DGTS and other betaine lipids in acyl editing in microalgae.
Collapse
|
13
|
Jimbo H, Wada H. Deacylation of galactolipids decomposes photosystem II dimers to enhance degradation of damaged D1 protein. PLANT PHYSIOLOGY 2023; 191:87-95. [PMID: 36189956 PMCID: PMC9806619 DOI: 10.1093/plphys/kiac460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2022] [Indexed: 05/28/2023]
Abstract
Photosystem II (PSII) contains many lipid molecules that are essential for the function and maintenance of PSII. Under strong light conditions, PSII complexes are dynamically modified during the repair process; however, the molecular mechanism of the dynamic changes in the PSII structure is still unclear. In the present study, we investigated the role of a lipase in the repair of PSII in Synechocystis sp. PCC 6803. We identified a protein encoded by the sll1969 gene, previously named lipase A (lipA), in the Synechocystis sp. PCC 6803 genome as a candidate for the lipase involved in PSII repair. Recombinant protein expressed in Escherichia coli cells hydrolyzed fatty acids at the sn-1 position of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol as well as triacylglycerol esterified with stearic acids. PSII repair in a disrupted mutant of the lipA gene was suppressed by the slow degradation of damaged D1 protein under strong light. The level of the PSII dimer remained higher in lipA mutant cells than wild-type (WT) cells under strong light. LipA protein was associated with the PSII dimer in vivo, and recombinant LipA protein decomposed PSII dimers purified from WT cells to monomers by reducing MGDG content in the PSII complex. These results indicate that LipA reacts with PSII dimers, dissociates them into monomers by digesting MGDG, and enhances D1 degradation during PSII repair.
Collapse
Affiliation(s)
- Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Wang R, Miao X. Lipid turnover and SQUAMOSA promoter-binding proteins mediate variation in fatty acid desaturation under early nitrogen deprivation revealed by lipidomic and transcriptomic analyses in Chlorella pyrenoidosa. FRONTIERS IN PLANT SCIENCE 2022; 13:987354. [PMID: 36247620 PMCID: PMC9558234 DOI: 10.3389/fpls.2022.987354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen deprivation induces variations in fatty acid desaturation in microalgae, which determines the performance of biodiesel and the nutritional value of bioproducts. However, the detailed scenario and the underlying regulatory mechanism remain unclear. In this study, we attempt to outline these scenario and mechanisms by performing biochemical, lipidomic, and transcriptomic analyses in Chlorella pyrenoidosa and functional characterization of transcription factors in Yarrowia lipolytica. We found that early nitrogen deprivation dramatically reduced fatty acid desaturation without increasing lipid content. The contents of palmitic acid (16:0) and oleic acid (18:1) dramatically increased to 2.14 and 2.87 times that of nitrogen repletion on the second day, respectively. Lipidomic analysis showed the transfer of polyunsaturated fatty acids from phospholipids and glycolipids to triacylglycerols, and an increase in lipid species with 16:0 or 18:1 under nitrogen deprivation conditions. Upregulated stearoyl-ACP desaturase and oleyl-ACP thioesterase promoted the synthesis of 18:1, but restricted acetyl-CoA supply revealed that it was the intensive lipid turnover instead of an attenuated Kennedy pathway that played an important role in the variation in fatty acid composition under early nitrogen deprivation. Finally, two differentially expressed SQUAMOSA promoter-binding proteins (SBPs) were heterologously expressed in Y. lipolytica, demonstrating their role in promoting the accumulation of total fatty acid and the reduction in fatty acid desaturation. These results revealed the crucial role of lipid turnover and SBPs in determining fatty acid desaturation under early nitrogen deprivation, opening new avenues for the metabolic engineering of fatty acid desaturation in microalgae.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Lee JW, Lee MW, Jin CZ, Oh HM, Jin E, Lee HG. Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:88. [PMID: 36030272 PMCID: PMC9419350 DOI: 10.1186/s13068-022-02187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.
Results
The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m2/s), TAG productivity in Cr-mgd1–HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT–HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.
Conclusions
By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.
Collapse
|
16
|
Young DY, Pang N, Shachar-Hill Y. 13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas. PLANT PHYSIOLOGY 2022; 189:1326-1344. [PMID: 35377446 PMCID: PMC9237737 DOI: 10.1093/plphys/kiac154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|