1
|
Li M, Na X, Lin F, Liang S, Huang Y, Song J, Xu X, Yang C. DMF-ChIP-seq for Highly Sensitive and Integrated Epigenomic Profiling of Low-Input Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52047-52058. [PMID: 39303213 DOI: 10.1021/acsami.4c11280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Mapping genome-wide DNA-protein interactions (DPIs) provides insights into the epigenetic landscape of complex biological systems and elucidates the mechanisms of epigenetic regulation in biological progress. However, current technologies in DPI profiling still suffer from high cell demands, low detection sensitivity, and large reagent consumption. To address these problems, we developed DMF-ChIP-seq that builds on digital microfluidic (DMF) technology to profile genome-wide DPIs in a highly efficient, cost-effective, and user-friendly way. The entire workflow including cell pretreatment, antibody recognition, pA-Tn5 tagmentation, fragment enrichment, and PCR amplification is programmatically manipulated on a single chip. Leveraging closed submicroliter reaction volumes and a superhydrophobic interface, DMF-ChIP-seq presented higher sensitivity in peak enrichment than other current methods, with high accuracy (Pearson Correlation Coefficient (PCC) > 0.86) and high repeatability (PCC > 0.92). Furthermore, DMF-ChIP-seq was capable of processing the samples with as few as 8 cells while maintaining a high signal-to-noise ratio. By applying DMF-ChIP-seq, H3K27ac histone modification of early embryonic cells during differentiation was profiled for the investigation of epigenomic landscape dynamics. With the benefits of high efficiency and sensitivity in DPI analysis, the system provides great promise in studying epigenetic regulation during various biological processes.
Collapse
Affiliation(s)
- Mingyin Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Na
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fanghe Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shanshan Liang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Won JH, Park J, Lee HG, Shim S, Lee H, Oh E, Seo PJ. The PRR-EC complex and SWR1 chromatin remodeling complex function cooperatively to repress nighttime hypocotyl elongation by modulating PIF4 expression in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100981. [PMID: 38816994 PMCID: PMC11412930 DOI: 10.1016/j.xplc.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses. Here, we show that physical interactions among evening clock components, including PSEUDO-RESPONSE REGULATOR 5 (PRR5), TIMING OF CAB EXPRESSION 1 (TOC1), and the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3), define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) locus in Arabidopsis. These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation, as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant, concomitantly with a substantial increase in PIF4 expression. Transcriptional repression of PIF4 by ELF3, PRR5, and TOC1 is mediated by the SWI2/SNF2-RELATED (SWR1) chromatin remodeling complex, which incorporates histone H2A.Z at the PIF4 locus, facilitating robust epigenetic suppression of PIF4 during the evening. Overall, these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.
Collapse
Affiliation(s)
- Jin Hoon Won
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangrae Shim
- Department of Forest Resources, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Slocum RD, Mejia Peña C, Liu Z. Transcriptional reprogramming of nucleotide metabolism in response to altered pyrimidine availability in Arabidopsis seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1273235. [PMID: 38023851 PMCID: PMC10652772 DOI: 10.3389/fpls.2023.1273235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In Arabidopsis seedlings, inhibition of aspartate transcarbamoylase (ATC) and de novo pyrimidine synthesis resulted in pyrimidine starvation and developmental arrest a few days after germination. Synthesis of pyrimidine nucleotides by salvaging of exogenous uridine (Urd) restored normal seedling growth and development. We used this experimental system and transcriptional profiling to investigate genome-wide responses to changes in pyrimidine availability. Gene expression changes at different times after Urd supplementation of pyrimidine-starved seedlings were mapped to major pathways of nucleotide metabolism, in order to better understand potential coordination of pathway activities, at the level of transcription. Repression of de novo synthesis genes and induction of intracellular and extracellular salvaging genes were early and sustained responses to pyrimidine limitation. Since de novo synthesis is energetically more costly than salvaging, this may reflect a reduced energy status of the seedlings, as has been shown in recent studies for seedlings growing under pyrimidine limitation. The unexpected induction of pyrimidine catabolism genes under pyrimidine starvation may result from induction of nucleoside hydrolase NSH1 and repression of genes in the plastid salvaging pathway, diverting uracil (Ura) to catabolism. Identification of pyrimidine-responsive transcription factors with enriched binding sites in highly coexpressed genes of nucleotide metabolism and modeling of potential transcription regulatory networks provided new insights into possible transcriptional control of key enzymes and transporters that regulate nucleotide homeostasis in plants.
Collapse
Affiliation(s)
- Robert D. Slocum
- Department of Biological Sciences, Goucher College, Towson, MD, United States
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
4
|
Kang JE, Jun JH, Kwon JH, Lee JH, Hwang K, Kim S, Jeong N. Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-Liquid/Liquid Phase Separation, Oligomerization, GO Analysis: A Toolkit for Interaction Data-Based Domain Analysis. Genes (Basel) 2023; 14:1476. [PMID: 37510380 PMCID: PMC10379056 DOI: 10.3390/genes14071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although a large number of databases are available for regulatory elements, a bottleneck has been created by the lack of bioinformatics tools to predict the interaction modes of regulatory elements. To reduce this gap, we developed the Arabidopsis Transcription Regulatory Factor Domain/Domain Interaction Analysis Tool-liquid/liquid phase separation (LLPS), oligomerization, GO analysis (ART FOUNDATION-LOG), a useful toolkit for protein-nucleic acid interaction (PNI) and protein-protein interaction (PPI) analysis based on domain-domain interactions (DDIs). LLPS, protein oligomerization, the structural properties of protein domains, and protein modifications are major components in the orchestration of the spatiotemporal dynamics of PPIs and PNIs. Our goal is to integrate PPI/PNI information into the development of a prediction model for identifying important genetic variants in peaches. Our program unified interdatabase relational keys based on protein domains to facilitate inference from the model species. A key advantage of this program lies in the integrated information of related features, such as protein oligomerization, LOG analysis, structural characterizations of domains (e.g., domain linkers, intrinsically disordered regions, DDIs, domain-motif (peptide) interactions, beta sheets, and transmembrane helices), and post-translational modification. We provided simple tests to demonstrate how to use this program, which can be applied to other eukaryotic organisms.
Collapse
Affiliation(s)
- Jee Eun Kang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ji Hae Jun
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Jung Hyun Kwon
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Ju-Hyun Lee
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Kidong Hwang
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Sungjong Kim
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| | - Namhee Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Gallusci P, Agius DR, Moschou PN, Dobránszki J, Kaiserli E, Martinelli F. Deep inside the epigenetic memories of stressed plants. TRENDS IN PLANT SCIENCE 2023; 28:142-153. [PMID: 36404175 DOI: 10.1016/j.tplants.2022.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence sheds light on the peculiar type of plant intelligence. Plants have developed complex molecular networks that allow them to remember, choose, and make decisions depending on the stress stimulus, although they lack a nervous system. Being sessile, plants can exploit these networks to optimize their resources cost-effectively and maximize their fitness in response to multiple environmental stresses. Even more interesting is the capability to transmit this experience to the next generation(s) through epigenetic modifications that add to the classical genetic inheritance. In this opinion article, we present concepts and perspectives regarding the capabilities of plants to sense, perceive, remember, re-elaborate, respond, and to some extent transmit to their progeny information to adapt more efficiently to climate change.
Collapse
Affiliation(s)
- Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France
| | - Dolores R Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Ġ.F. Abela Junior College, Ġuzè Debono Square, Msida, Malta
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden; Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
7
|
Gavgani HN, Grotewold E, Gray J. Methodology for Constructing a Knowledgebase for Plant Gene Regulation Information. Methods Mol Biol 2023; 2698:277-300. [PMID: 37682481 DOI: 10.1007/978-1-0716-3354-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The amount of biological data is growing at a rapid pace as many high-throughput omics technologies and data pipelines are developed. This is resulting in the growth of databases for DNA and protein sequences, gene expression, protein accumulation, structural, and localization information. The diversity and multi-omics nature of such bioinformatic data requires well-designed databases for flexible organization and presentation. Besides general-purpose online bioinformatic databases, users need narrowly focused online databases to quickly access a meaningful collection of related data for their research. Here, we describe the methodology used to implement a plant gene regulatory knowledgebase, with data, query, and tool features, as well as the ability to expand to accommodate future datasets. We exemplify this methodology for the GRASSIUS knowledgebase, but it is applicable to developing and updating similar plant gene regulatory knowledgebases. GRASSIUS organizes and presents gene regulatory data from grass species with a central focus on maize (Zea mays). The main class of data presented include not only the families of transcription factors (TFs) and co-regulators (CRs) but also protein-DNA interaction data, where available.
Collapse
Affiliation(s)
- Hadi Nayebi Gavgani
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Dandelions Therapeutics Inc., San Francisco, CA, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|