1
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
3
|
Chen X, Hu X, Jiang J, Wang X. Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits. PLANT & CELL PHYSIOLOGY 2024; 65:1568-1580. [PMID: 38619133 DOI: 10.1093/pcp/pcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number and leaf erectness, and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Xiaotong Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| |
Collapse
|
4
|
Gao X, Li J, Yin J, Zhao Y, Wu Z, Ma L, Zhang B, Zhang H, Huang J. The protein phosphatase qGL3/OsPPKL1 self-regulates its degradation to orchestrate brassinosteroid signaling in rice. PLANT COMMUNICATIONS 2024; 5:100849. [PMID: 38384133 PMCID: PMC11211515 DOI: 10.1016/j.xplc.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Brassinosteroids (BRs) are a class of phytohormones that regulate plant growth and development. In previous studies, we cloned and identified PROTEIN PHOSPHATASE WITH KELCH-LIKE1 (OsPPKL1) as the causal gene for the quantitative trait locus GRAIN LENGTH3 (qGL3) in rice (Oryza sativa). We also showed that qGL3/OsPPKL1 is mainly located in the cytoplasm and nucleus and negatively regulates BR signaling and grain length. Because qGL3 is a negative regulator of BR signaling, its turnover is critical for rapid response to changes in BRs. Here, we demonstrate that qGL3 interacts with the WD40-domain-containing protein WD40-REPEAT PROTEIN48 (OsWDR48), which contains a nuclear export signal (NES). The NES signal is crucial for the cytosolic localization of OsWDR48 and also functions in the self-turnover of qGL3. We show that OsWDR48 physically interacts with and genetically acts through qGL3 to modulate BR signaling. Moreover, qGL3 may indirectly promote the phosphorylation of OsWDR48 at the Ser-379 and Ser-386 sites. Substitutions of both phosphorylation sites in OsWDR48 to non-phosphorylatable alanine enhanced the strength of the OsWDR48-qGL3 interaction. Furthermore, we found that brassinolide can promote the accumulation of non-phosphorylated OsWDR48, leading to strong interaction intensity between qGL3 and OsWDR48. Taken together, our results show that OsWDR48 facilitates qGL3 retention and induces degradation of qGL3 in the cytoplasm. These findings suggest that qGL3 self-modulates its turnover by binding to OsWDR48 to regulate its cytoplasmic localization and stability, leading to efficient orchestration of BR signal transduction in rice.
Collapse
Affiliation(s)
- Xiuying Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jing Yin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yiheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Zhongsheng Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Lijuan Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Baoyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China.
| |
Collapse
|
5
|
Song Y, Yang H, Zhu W, Wang H, Zhang J, Li Y. The Os14-3-3 family genes regulate grain size in rice. J Genet Genomics 2024; 51:454-457. [PMID: 37913987 DOI: 10.1016/j.jgg.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Yingying Song
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huaizhou Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wenran Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huili Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Zhou Z, Huang J, Wang Y, He S, Yang J, Wang Y, Li W, Liu Y, Xu R, Li Y, Wu L. Genome-Wide Identification and Expression Analysis of the DA1 Gene Family in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2024; 25:3000. [PMID: 38474246 DOI: 10.3390/ijms25053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.
Collapse
Affiliation(s)
- Zelong Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jianzhi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuehui Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shixiang He
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jing Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ying Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Wenxing Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yi Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
7
|
Fang R, Lv G, Zhang X, Chen J, Chen X, Wang B. Preharvest 24-epibrassinolide treatment prolongs harvest duration and shelf life in sweet corn. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100179. [PMID: 37583676 PMCID: PMC10423688 DOI: 10.1016/j.fochms.2023.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Sweet corn is perishable and have limited harvest duration and shelf life due to their quality deterioration. Reactive oxygen species (ROS) are one of the most predominant factors for maintaining quality of sweet corn during and after harvest. Brassinosteroids (BRs) can enhance the activity of antioxidant enzymes and decrease the ROS level in plants. In this study, we found that a bioactive BR (24-epibrassinolide, EBR) treatment before harvest markedly inhibited change of quality indicators (MDA content, weight loss rate, and soluble sugar content) during and after harvest. Further analysis revealed that EBR promoted the activity and transcriptions of antioxidant enzymes, maintaining lower ROS level in kernels. Meanwhile, exogenous EBR increased the expression level of genes controlling sucrose transport in sweet corn kernels. Bioinformatics and binding analysis identified that BR transcription factor ZmBES1/ZmBZR1-10 might potentially bind to and upregulate transcriptions of antioxidant enzyme genes including SOD and POD genes, and sucrose transport-related genes including SUT and SWEET genes. These results indicated that exogenous application of EBR ameliorates quality during and after harvest by improving the antioxidant capacity and photosynthetic assimilates accumulation rate of sweet corn, thus prolonging harvest duration and shelf life in sweet corn.
Collapse
Affiliation(s)
- Ruiqiu Fang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang 322100, China
| | - Guihua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang 322100, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jianjian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang 322100, China
| | - Xiaolong Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang 322100, China
| | - Bin Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
8
|
Du H, Yong R, Zhang J, Cai G, Wang R, Li J, Wang Y, Zhang H, Gao X, Huang J. OsBAK2/OsSERK2 expression is repressed by OsBZR1 to modulate brassinosteroid response and grain length in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4978-4993. [PMID: 37235693 DOI: 10.1093/jxb/erad196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are a class of polyhydroxylated steroidal phytohormones that are essential for plant growth and development. Rice BRASSINOSTEROID-INSENSITIVE1 (BRI1)-ASSOCIATED RECEPTOR KINASES (OsBAKs) are plasma membrane-localized receptor kinases belonging to the subfamily of leucine-rich repeat receptor kinases. It has been found that in Arabidopsis, BRs induce the formation of a BRI1-BAK1 heterodimer complex and transmit the cascade signal to BRASSINAZOLE RESISTANT1/bri1-EMS-SUPPRESSOR1 (BZR1/BES1) to regulate BR signaling. Here, in rice (Oryza sativa ssp. japonica), we found that OsBZR1 binds directly to the promoter of OsBAK2, but not OsBAK1, and represses the expression of OsBAK2 to form a BR feedback inhibition loop. Additionally, the phosphorylation of OsBZR1 by OsGSK3 reduced its binding to the OsBAK2 promoter. The osbak2 mutant displays a typical BR-deficiency phenotype and negative modulates the accumulation of OsBZR1. Interestingly, the grain length of the osbak2 mutant was increased whereas in the cr-osbak2/cr-osbzr1 double mutant, the reduced grain length of the cr-osbzr1 mutant was restored, implying that the increased grain length of osbak2 may be due to the rice somatic embryogenesis receptor kinase-dependent pathway. Our study reveals a novel mechanism by which OsBAK2 and OsBZR1 engage in a negative feedback loop to maintain rice BR homeostasis, facilitating a deeper understanding of the BR signaling network and grain length regulation in rice.
Collapse
Affiliation(s)
- Huaying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Rong Yong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jiaqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Guang Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yuji Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Xiuying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| |
Collapse
|
9
|
Bai F, Ma H, Cai Y, Shahid MQ, Zheng Y, Lang C, Chen Z, Wu J, Liu X, Wang L. Natural allelic variation in GRAIN SIZE AND WEIGHT 3 of wild rice regulates the grain size and weight. PLANT PHYSIOLOGY 2023; 193:502-518. [PMID: 37249047 PMCID: PMC10469372 DOI: 10.1093/plphys/kiad320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Grain size is important for yield in rice (Oryza sativa L.). Although many genes involved in grain size have been isolated, few can be used in breeding due to their interactions and phenotypic effects. Here, we describe natural variation in the granule-type quantitative trait locus GRAIN SIZE AND WEIGHT 3 (GSW3) located on chromosome 3 in wild rice (Oryza rufipogon Griff.) that encodes a GTPase-regulated protein and negatively regulates grain length, grain width, and 1,000-grain weight. The insertion of a 232-bp fragment of the genomic sequence in the wild rice, a natural allelic variant gene (GSW3), increased the expression levels and reduced the grain length and width and 1,000-grain weight. Knockout of GSW3 in the wild rice inbred line Huaye 3 increased the grain length and width and 1,000-grain weight. Introducing GSW3Huaye3 into cultivated rice line KJ01 and overexpressing GSW3Huaye3 in Huaye 3 resulted in reduced grain length and width and 1,000-grain weight, and grain size and 1,000-grain weight changes were closely related to GSW3 expression levels. GSW3 regulated the grain length and width simultaneously by promoting grain glume cell division and longitudinal and transverse cell growth. GSW3 was also involved in regulating the gibberellic acid signaling pathway and negatively regulated plant growth. Furthermore, a critical SNP in the GSW3 coding region was obviously correlated with grain size variation in a core collection of cultivated rice. This SNP resulted in an amino acid substitution from Gln to Arg at position 161 in GSW3, which reduced the grain size. Our study shows that GSW3 negatively regulates the grain shape, which could explain different grain shapes in modern cultivars and wild rice. GSW3 may also be used for breeding rice varieties with improved grain shapes and higher yield.
Collapse
Affiliation(s)
- Feng Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huijin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yichang Cai
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yuebin Zheng
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuan Lang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. PLANT, CELL & ENVIRONMENT 2023; 46:1232-1248. [PMID: 36539986 DOI: 10.1111/pce.14520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.
Collapse
Affiliation(s)
- Ningna Wang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiyuan Shi
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qun Jiang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenxia Fan
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Feng
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng Lin
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Hu Z, Niu F, Yan P, Wang K, Zhang L, Yan Y, Zhu Y, Dong S, Ma F, Lan D, Liu S, Xin X, Wang Y, Yang J, Cao L, Wu S, Luo X. The kinase OsSK41/OsGSK5 negatively regulates amylose content in rice endosperm by affecting the interaction between OsEBP89 and OsBP5. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36965127 DOI: 10.1111/jipb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.
Collapse
Affiliation(s)
- Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kai Wang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lixia Zhang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Ying Yan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Siwen Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoyun Xin
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shujun Wu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
12
|
Wang L, Liu Y, Zhao H, Zheng Y, Bai F, Deng S, Chen Z, Wu J, Liu X. Identification of qGL3.5, a Novel Locus Controlling Grain Length in Rice Through Bulked Segregant Analysis and Fine Mapping. FRONTIERS IN PLANT SCIENCE 2022; 13:921029. [PMID: 35783972 PMCID: PMC9240483 DOI: 10.3389/fpls.2022.921029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Grain length (GL) directly affects the yield and quality of rice. Very few cloned GL-related genes are applied in production because their yield-increasing effects are not obvious, and the overall regulatory networks underlying the associated processes remain poorly understood. DNA samples from two bulk DNA pools (L-pool and S-pool) and their parents (KJ01 and Huaye 3) were subjected to high-throughput sequencing. Using bulked segregant analysis (BSA), qGL3.5 was mapped to a 0.34-Mb "hotspot" region on chromosome 3 that contains 37 genes related to various traits. Then, qGL3.5 was mapped to the genomic interval between the flanking markers M2 and M3 using 2786 BC4F2 individuals. Because the region from B5 to B6 was not the associated region under BSA-seq analysis, qGL3.5 was narrowed down to the interval between B6 and M3, which spanned 24.0-kb. Of all 37 genes with non-synonymous single-nucleotide polymorphisms (SNPs) between KJ01 and Huaye 3 based on BSA-seq analysis, only one complete annotated gene, ORF18 (Gene ID: LOC_Os03g42790.1) was found. ORF18 encodes an IBR-RING zinc-finger-related protein, with one really interesting new gene (RING) and two in between ring finger (IBR) domains. The knockout of ORF18 derived from Huaye 3 using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) editing technology increased the GL of the mutant by approximately 2.2 mm. The novel locus qGL3.5 negatively regulated GL by promoting elongation of the longitudinal cell of the grain outer glume. These results provide a new genetic resource for rice grain shape breeding and a starting point for the functional characterization of the wild rice GL gene.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Haiyan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Songgang Middle School, Qingyuan, China
| | - Yuebin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Feng Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Wu Q, Liu Y, Huang J. CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. Int J Mol Sci 2022; 23:ijms23042347. [PMID: 35216463 PMCID: PMC8877319 DOI: 10.3390/ijms23042347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.
Collapse
|