1
|
Ji S, Yin P, Li T, Du X, Chen W, Zhang R, Yang X, Zhang X. Pan-WD40ome analysis of 26 diverse inbred lines reveals the structural and functional diversity of WD40 proteins in maize. BMC Genomics 2025; 26:181. [PMID: 39987072 PMCID: PMC11847395 DOI: 10.1186/s12864-025-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The WD40 repeat proteins are crucial components of eukaryotic genomes and contribute to a wide array of plant developmental processes and environmental interactions. However, the true extent of intraspecific WD40 diversity in plants is unclear. RESULTS We defined a nearly complete species-wide pan-WD40ome in maize based on the published genome sequences of 26 nested association mapping (NAM) population founders. The pan-WD40ome largely saturated with inclusion of approximately 20 inbred lines, with about 95% of the pan-WD40ome being present in at least two founders. The architectural diversity of the WD40 domains, additional domains, and consequent spatial protein structures suggested the functional diversity of the maize pan-WD40ome. This finding was supported by significant associations between 87 WD40 genes and 19 agronomic, 3 kernel-quality, and 3 biotic-stress traits, as well as the multiple molecular pathways through which the trait-associated WD40 genes were predicted to function. In addition, WD40 genes exhibited abundant genomic variations among the NAM founders. Sequence analysis indicated that gene duplications and gene translocations caused by Helitron transposons may play important roles in the amplification of WD40 genes during the evolution of the maize WD40 gene family. CONCLUSIONS In summary, this study provides a comprehensive framework for understanding the structural and functional diversity of the pan-WD40ome in maize and other agronomically important species with complex genomes, as well as excellent candidate genes/alleles for maize genetic improvement.
Collapse
Affiliation(s)
- Shenghui Ji
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Tao Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Du
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xuan Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
3
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
4
|
Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inzé D. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. THE PLANT CELL 2023; 35:218-238. [PMID: 36066192 PMCID: PMC9806654 DOI: 10.1093/plcell/koac243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/30/2022] [Indexed: 05/04/2023]
Abstract
Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.
Collapse
Affiliation(s)
| | | | - Denia Herwegh
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ward Develtere
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lennert Impens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Wout Vandeputte
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yara De Boe
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Van Hautegem
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | | |
Collapse
|
5
|
Genome-wide identification and expression analysis of anaphase promoting complex/cyclosome (APC/C) in rose. Int J Biol Macromol 2022; 223:1604-1618. [PMID: 36372105 DOI: 10.1016/j.ijbiomac.2022.11.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a large multi-subunit complex, regulating plant development and cell cycle. In plants, the APC/C gene family has been identified in Arabidopsis, rice, and maize. The APC/Cs in rose has not yet been reported. In this study, a total of 19 APC/C genes were identified in rose. Furthermore, we also investigated phylogenetic relationships, chromosomal distribution, gene structure, motif analysis, promoter sequence analysis and expression pattern of RhAPC/C genes. Synteny analysis indicated that AtAPC/Cs and RhAPC/Cs show a high degree of conservation. RhAPC/C promoters contains numerous cis-elements involved in plant morphogenesis, hormone response and stress response. Based on the transcription of RhAPC/Cs in different tissues and developmental stages, it appears that RhAPC/Cs may play a variety of roles in rose growth and development. RhAPC/Cs have limitations in the time and space during which they respond to hormones and abiotic stress. RhAPC5, RhAPC11d, RhAPC13a and RhAPC13c may play a role in rose responding to abiotic stress. The expression of RhAPC10 was altered by infection with fungal pathogen. Our study will serve as a basis for determining the functional role of APC/C genes in roses and help future research on woody plants.
Collapse
|
6
|
Inzé D, Nelissen H. The translatability of genetic networks from model to crop species: lessons from the past and perspectives for the future. THE NEW PHYTOLOGIST 2022; 236:43-48. [PMID: 35801919 DOI: 10.1111/nph.18364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/11/2022] [Indexed: 05/25/2023]
Abstract
Comparative analyses of growth-regulatory mechanisms between Arabidopsis and maize revealed that even when the gene space is conserved, the translation of knowledge from model species to crops is not trivial. Based on these insights, we formulate future opportunities to improve the interpretation of curiosity-driven research towards crop improvement.
Collapse
Affiliation(s)
- Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
7
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
8
|
Impens L, Jacobs TB, Nelissen H, Inzé D, Pauwels L. Mini-Review: Transgenerational CRISPR/Cas9 Gene Editing in Plants. Front Genome Ed 2022; 4:825042. [PMID: 35187531 PMCID: PMC8854858 DOI: 10.3389/fgeed.2022.825042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9 genome editing has been used extensively in a wide variety of plant species. Creation of loss-of-function alleles, promoter variants and mutant collections are a few of the many uses of genome editing. In a typical workflow for sexually reproducing species, plants are generated that contain an integrated CRISPR/Cas9 transgene. After editing of the gene of interest, T-DNA null segregants can be identified in the next generation that contain only the desired edit. However, maintained presence of the CRISPR/Cas9 transgene and continued editing in the subsequent generations offer a range of applications for model plants and crops. In this review, we define transgenerational gene editing (TGE) as the continued editing of CRISPR/Cas9 after a genetic cross. We discuss the concept of TGE, summarize the current main applications, and highlight special cases to illustrate the importance of TGE for plant genome editing research and breeding.
Collapse
Affiliation(s)
- Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Laurens Pauwels,
| |
Collapse
|