1
|
Shi W, Ye S, Xin Y, Jin H, Hu M, Zheng Y, Zhan Y, Liu H, Gan Y, Zheng Z, Pan T. NAC Transcription Factor GmNAC035 Exerts a Positive Regulatory Role in Enhancing Salt Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1391. [PMID: 40364420 PMCID: PMC12073727 DOI: 10.3390/plants14091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Soybean, a globally significant and versatile crop, serves as a vital source of both oil and protein. However, environmental factors such as soil salinization pose substantial challenges to its cultivation, adversely affecting both yield and quality. Enhancing the salt tolerance of soybeans can mitigate yield losses and promote the development of the soybean industry. Members of the plant-specific transcription factor family NAC play crucial roles in plant adaptation to abiotic stress conditions. In this study, we screened the soybean GmNAC family genes potentially involved in the salt stress response and identified 18 GmNAC genes that may function during the early stages of salt stress. Among these, the GmNAC035 gene exhibited a rapid increase in expression within one hour of salt treatment, with its expression being induced by abscisic acid (ABA) and methyl jasmonate (MeJA), suggesting its significant role in the soybean salt stress response. We further elucidated the role of GmNAC035 in soybean salt tolerance. GmNAC035, a nuclear-localized transcriptional activator, enhances salt tolerance when overexpressed in Arabidopsis, reducing oxidative damage and boosting the expression of stress-responsive genes. It achieves this by regulating key stress response pathways, including the SOS pathway, calcium signaling, and ABA signaling. These findings highlight the potential of GmNAC035 as a genetic engineering target to improve crop salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhifu Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.S.); (S.Y.); (Y.X.); (H.J.); (M.H.); (Y.Z.); (Y.Z.); (H.L.); (Y.G.)
| | - Tian Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.S.); (S.Y.); (Y.X.); (H.J.); (M.H.); (Y.Z.); (Y.Z.); (H.L.); (Y.G.)
| |
Collapse
|
2
|
Zhang Y, Dong G, Wu X, Chen F, Ruan B, Jiang Y, Zhang Y, Liu L, Yuan YW, Wu L, Wei J, Qian Q, Yu Y. Rice RuBisCO activase promotes the dark-induced leaf senescence by enhancing the degradation of filamentation temperature-sensitive H. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17267. [PMID: 39962361 DOI: 10.1111/tpj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 05/09/2025]
Abstract
Leaf senescence is a complex process that is triggered by many developmental and environmental factors. However, the mechanisms regulating leaf senescence remain unclear. Here, we revealed that rice ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) promotes the onset of basal dark-induced senescence. RCA was mainly expressed in the leaves, and its expression level quickly declined under dark conditions. Furthermore, rca mutant plants presented a prolonged leaf longevity phenotype in the dark, whereas overexpression of the large isoform of RCA (RCAL), not small isoform (RCAS), in rice and Arabidopsis accelerated leaf senescence. Filamentation temperature-sensitive H (OsFtsH1), a zinc metalloprotease, interacts with RCAL and RCAS and presents a higher binding efficiency to RCAL than RCAS in darkness. Furthermore, we found that RCAL promotes 26S proteasome-mediated degradation of OsFtsH1 protein, which can be inhibited by protease inhibitor MG132. Consequently, OsFtsH1 loss-of-function mutants exhibit accelerated leaf senescence, whereas OsFtsH1-overexpressing plants display delayed senescence. Collectively, our findings highlight the significant role of RCAL isoform in regulating leaf senescence under dark conditions, particularly through enhancing the degradation of OsFtsH1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Xiaoyue Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lu Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jian Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| |
Collapse
|
3
|
Li Y, Yin M, Wang J, Zhao X, Xu J, Wang W, Fu B. Epitranscriptome profiles reveal participation of the RNA methyltransferase gene OsMTA1 in rice seed germination and salt stress response. BMC PLANT BIOLOGY 2025; 25:115. [PMID: 39865266 PMCID: PMC11771074 DOI: 10.1186/s12870-025-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type. RESULTS The knockout of OsMTA1 resulted in a decreased level of m6A methylation and delayed seed germination, together with increased oxidative damage in the osmta1-1 mutant, especially under salt stress, indicating that OsMTA1 performs a crucial function in rice seed germination and salt stress response. Comparative analysis of m6A profiling using methylated RNA immunoprecipitation sequencing revealed that a unique set of genes that functioned in seed germination, cell growth, and development, including OsbZIP78 and OsA8, were hypomethylated in osmta1-1 embryos and germinating seeds. Numerous genes involved in plant growth and stress response were hypomethylated in the osmta1-1 mutant during seed germination under salt stress. Further combined analysis of the m6A methylome and transcriptome revealed that the loss of function of OsMTA1 had a more complex impact on gene expression in osmta1-1. Several hypomethylated genes with a negative role in growth and development, such as OsHsfA7 and OsHDAC3, were highly up-regulated in the osmta1-1 mutant under the control condition. In contrast, several hypomethylated genes positively associated with stress response were down-regulated, whereas a different set of hypomethylated genes that functioned as negative regulators of growth and stress response were up-regulated in the osmta1-1 mutant under salt stress. These results further demonstrated that OsMTA1-mediated m6A methylation modulated rice seed germination and salt stress response by regulating transcription of a unique set of genes with diverse functions. CONCLUSION Our results reveal a crucial role for the m6A methyltransferase gene OsMTA1 in regulating rice seed germination and salt stress response, and provide candidate genes to assist in breeding new stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Yingbo Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
4
|
Yang H, Huang J, Ye Y, Xu Y, Xiao Y, Chen Z, Li X, Ma Y, Lu T, Rao Y. Research Progress on Mechanical Strength of Rice Stalks. PLANTS (BASEL, SWITZERLAND) 2024; 13:1726. [PMID: 38999566 PMCID: PMC11243543 DOI: 10.3390/plants13131726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
As one of the most important food crops in the world, rice yield is directly related to national food security. Lodging is one of the most important factors restricting rice production, and the cultivation of rice varieties with lodging resistance is of great significance in rice breeding. The lodging resistance of rice is directly related to the mechanical strength of the stalks. In this paper, we reviewed the cell wall structure, its components, and its genetic regulatory mechanism, which improved the regulatory network of rice stalk mechanical strength. Meanwhile, we analyzed the new progress in genetic breeding and put forward some scientific problems that need to be solved in this field in order to provide theoretical support for the improvement and application of rice breeding.
Collapse
Affiliation(s)
- Huimin Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuhan Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yao Xiao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ziying Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyu Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Zhang C, Chen L, Hou S. The emerging roles of clathrin-mediated endocytosis in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154189. [PMID: 38432037 DOI: 10.1016/j.jplph.2024.154189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Clathrin-mediated endocytosis (CME) is a highly conserved pathway that plays a crucial role in the endocytosis of plasma membrane proteins in eukaryotic cells. The pathway is initiated when the adaptor protein complex 2 (AP2) and TPLATE complex (TPC) work together to recognize cargo proteins and recruit clathrin. This review provides a concise overview of the functions of each subunit of AP2 and TPC, and highlights the involvement of CME in various biological processes, such as pollen development, root development, nutrient transport, extracellular signal transduction, auxin polar transport, hyperosmotic stress, salinity stress, high ammonium stress, and disease resistance. Additionally, the review explores the regulation of CME by phytohormones, clathrin-mediated exocytosis (CMX), and AP2M phosphorylation. It also suggests potential future research directions for CME.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liang Chen
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Zhu X, Yin J, Guo H, Wang Y, Ma B. Vesicle trafficking in rice: too little is known. FRONTIERS IN PLANT SCIENCE 2023; 14:1263966. [PMID: 37790794 PMCID: PMC10543891 DOI: 10.3389/fpls.2023.1263966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
The vesicle trafficking apparatus is a fundamental machinery to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. Thus, it is broadly conserved in eukaryotes including plants. Intensive studies in the model organisms have produced a comprehensive picture of vesicle trafficking in yeast and human. However, with respect to the vesicle trafficking of plants including rice, our understanding of the components and their coordinated regulation is very limited. At present, several vesicle trafficking apparatus components and cargo proteins have been identified and characterized in rice, but there still remain large unknowns concerning the organization and function of the rice vesicle trafficking system. In this review, we outline the main vesicle trafficking pathways of rice based on knowledge obtained in model organisms, and summarize current advances of rice vesicle trafficking. We also propose to develop methodologies applicable to rice and even other crops for further exploring the mysteries of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hongming Guo
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Wang H, Ouyang J, Jian W, Li M, Zhong J, Yan X, Gao J, Wang X, Li S. Rice miR5504 regulates plant height by affecting cell proliferation and expansion. PHYSIOLOGIA PLANTARUM 2023; 175:e14023. [PMID: 37882316 DOI: 10.1111/ppl.14023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
miRNAs play critical roles in the regulation of plant growth and development by cleaving mRNA or repressing transcription. In our previous study, miR5504 with unknown functions was captured by small RNA sequencing. Here, the function and characters of miR5504 were extensively analyzed using CRISPR/Cas9, overexpression strategy, Northern blot, cytological analysis, and transcriptomics analysis. We found that the dwarf phenotype of mir5504 mutants (mir5504-1 and mir5504-2) appeared on 35-day seedlings and became more apparent at the mature stage. The cytological results showed a substantial decrease in the vascular bundle number, cell number and cell length in the mir5504 mutant compared with NIP. In addition, we found that miR5504 regulated plant height by targeting LOC_Os08g16914. The results of RNA-seq revealed that numerous biological processes were mainly enriched, including DNA-binding transcription factor activity, transferase activity, regulation of transcription, metabolic process, and protein binding. Meanwhile, KEEG analysis showed that numerous proteins were associated with cellular processes and metabolism pathways. Taken together, miR5504 may be involved in the regulation of plant height by affecting cell expansion and division of internode in rice.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Wenjia Jian
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiancong Zhong
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jiadong Gao
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Ullah U, Mao W, Abbas W, Alharthi B, Bhanbhro N, Xiong M, Gul N, Shalmani A. OsMBTB32, a MATH-BTB domain-containing protein that interacts with OsCUL1s to regulate salt tolerance in rice. Funct Integr Genomics 2023; 23:139. [PMID: 37115335 DOI: 10.1007/s10142-023-01061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.
Collapse
Affiliation(s)
- Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenli Mao
- Shaanxi Changqing National Nature Reserve, Hanzhong, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, Taif, Saudi Arabia
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Nazish Gul
- Department of Genetics, Hazara University, Mansehra, KPK, Pakistan
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Gao Q, Yin X, Wang F, Hu S, Liu W, Chen L, Dai X, Liang M. OsJRL40, a Jacalin-Related Lectin Gene, Promotes Salt Stress Tolerance in Rice. Int J Mol Sci 2023; 24:ijms24087441. [PMID: 37108614 PMCID: PMC10138497 DOI: 10.3390/ijms24087441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
High salinity is a major stress factor affecting the quality and productivity of rice (Oryza sativa L.). Although numerous salt tolerance-related genes have been identified in rice, their molecular mechanisms remain unknown. Here, we report that OsJRL40, a jacalin-related lectin gene, confers remarkable salt tolerance in rice. The loss of function of OsJRL40 increased sensitivity to salt stress in rice, whereas its overexpression enhanced salt tolerance at the seedling stage and during reproductive growth. β-glucuronidase (GUS) reporter assays indicated that OsJRL40 is expressed to higher levels in roots and internodes than in other tissues, and subcellular localization analysis revealed that the OsJRL40 protein localizes to the cytoplasm. Further molecular analyses showed that OsJRL40 enhances antioxidant enzyme activities and regulates Na+-K+ homeostasis under salt stress. RNA-seq analysis revealed that OsJRL40 regulates salt tolerance in rice by controlling the expression of genes encoding Na+/K+ transporters, salt-responsive transcription factors, and other salt response-related proteins. Overall, this study provides a scientific basis for an in-depth investigation of the salt tolerance mechanism in rice and could guide the breeding of salt-tolerant rice cultivars.
Collapse
Affiliation(s)
- Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Xiaolin Yin
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Shuchang Hu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Weihao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
11
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|