1
|
Zhang Z, Wang X, Gao Y, Xian X, Zhang D, Zhao W, Wang X, Wang Y. Orchestrating anthocyanin biosynthesis in fruit of fruit trees: Transcriptional, post-transcriptional, and post-translational regulation. Int J Biol Macromol 2025; 307:141835. [PMID: 40064275 DOI: 10.1016/j.ijbiomac.2025.141835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits. Accordingly, based on the consumption demand of beauty and nutrition, the creation of fruit tree products rich in anthocyanin is becoming an important breeding goal. The synthesis of anthocyanin has been investigated in various fruits, which is modulated by a variety of endogenous and exogenous factors, including transcription factors (TFs), plant hormones, and environmental factors (such as light, low temperature, drought). However, the detailed mechanisms in fruits of fruit trees have not been thoroughly elucidated. This review comprehensively examines the regulation of anthocyanin biosynthesis at the transcriptional, post-transcriptional, and post-translational levels, which is important for the application of molecular design strategies to cultivate high-quality fruits. At the transcriptional level, TFs were summarized to directly regulate anthocyanin biosynthesis genes, target non-anthocyanin biosynthesis pathway genes, interact with other proteins to mediate anthocyanin synthesis, and regulate anthocyanin synthesis by environmental factors and plant hormones. At the post-transcriptional level, non-coding RNAs (ncRNAs) were elucidated to mediate anthocyanin synthesis. At the post-translational level, a variety of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, and persulfidation, have been elucidated to exhibit crucial functions in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbing Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Yuan Q, Wang J, Liu F, Dai X, Zhu F, Zou X, Xiong C. Genome-Wide Identification of the BTB Domain-Containing Protein Gene Family in Pepper ( Capsicum annuum L.). Int J Mol Sci 2025; 26:3429. [PMID: 40244299 PMCID: PMC11989735 DOI: 10.3390/ijms26073429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Pepper (Capsicum annuum L.), recognized as a globally preeminent vegetable, holds substantial economic and nutritional value. The BTB (broad-complex, tramtrack, and bric-a-brac) family of proteins, characterized by a highly conserved BTB domain, also denoted as the POZ domain, are intricately involved in a diverse array of biological processes. However, the existing corpus of research regarding pepper BTB genes remains relatively meager. In this study, a total of 72 CaBTB gene members were meticulously identified from the entire genome of pepper. Phylogenetic analysis illuminated the presence of conspicuous collinear relationships between the CaBTB genes and those of its closely affiliated species. Gene expression profiling and RT-qPCR analysis revealed that multiple CaBTB genes exhibited pronounced differential expression under diverse treatment regimens. Expression pattern analysis unveiled that CaBTB25 manifested a remarkably elevated abundance in leaves. Moreover, its promoters were replete with an abundance of light-responsive cis-elements. Our comprehensive and in-depth explorations into subcellular localization revealed that CaBTB25 was predominantly detected to localize within the nucleus and lacked transcriptional activation. This research provides a crucial theoretical edifice, enabling a more profound understanding of the biological functions of the BTB gene family in pepper, thereby underscoring its potential significance within the intricate network of gene-environment interactions.
Collapse
Affiliation(s)
- Qiaoling Yuan
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Jin Wang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Feng Liu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Xiongze Dai
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Fan Zhu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Xuexiao Zou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Cheng Xiong
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
3
|
Cao Z, Chen Y, Chen Y, Wang X, Phyon JM, Zhou S, Cao Z, Wang Y, Yang J. Light regulates SlCOP1-mediated degradation of SlJAF13, a transcription factor essential for anthocyanin biosynthesis in Aft tomato fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109572. [PMID: 39922021 DOI: 10.1016/j.plaphy.2025.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
When they are exposed to light, the fruit of tomato plants (Solanum lycopersicum) carrying the dominant gene Anthocyanin fruit (Aft) accumulate anthocyanins. As the regulatory mechanism underlying this accumulation remains unclear, the role played by light in the regulation of SlJAF13, a bHLH transcription factor responsible for anthocyanin biosynthesis in tomato fruit peel, was examined. Gene expression analysis, GUS staining, and immunoblotting assays revealed that light enhanced the stability of SlJAF13 protein at a post-transcriptional level rather than transcriptionally. Protein-protein interaction assays and in vitro ubiquitination analysis revealed that CONSTITUTIVE PHOTOMORPHOGENIC1 (SlCOP1), a RING E3 ubiquitin ligase, physically interacted with SlJAF13, resulting in the ubiquitination and subsequent degradation of SlJAF13. Additionally, reductions in the levels of both anthocyanins and SlJAF13 protein were observed in fruit from plants over-expressing SlCOP1, providing further evidence that the suppressive effect of SlCOP1 on anthocyanin accumulation facilitated SlJAF13 degradation. These findings confirm the role of light in the stabilization of SIJAF13 in tomato fruit and thus provide novel insight into anthocyanin regulation in an important horticultural crop species under light conditions.
Collapse
Affiliation(s)
- Ziqian Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China.
| | - Yuansen Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Xin Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Jong Min Phyon
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Shuping Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Ziqi Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Jianfei Yang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Li Q, Wang X, Wang J, Su Y, Guo Y, Yang J, Liu J, Xue Z, Dong J, Ma P. SmCSN5 is a synergist in the transcription factor SmMYB36-mediated biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2025; 12:uhaf005. [PMID: 40078719 PMCID: PMC11896976 DOI: 10.1093/hr/uhaf005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
The ubiquitin-26S proteasome system (UPS) is associated with protein stability and activity, regulation of hormone signaling, and the production of secondary metabolites in plants. Though the mechanism of action of SmMYB36 on the tanshinone and phenolic acid biosynthesis is well understood, its regulation through post-translational modifications is unclear. A constitutive photomorphogenesis 9 (COP9) signalosome subunit 5 (SmCSN5), which interacted with SmMYB36 and inhibited its ubiquitination-based degradation, was identified in Salvia miltiorrhiza. SmCSN5 promoted tanshinone biosynthesis but inhibited phenolic acid biosynthesis in the hairy roots of S. miltiorrhiza. SmMYB36 also activated the transcription of the target genes SmDXS2 and SmCPS1 but repressed that of SmRAS in a SmCSN5-dependent manner. SmCSN5 acts as a positive regulator in MeJA-induced biosynthesis of tanshinones and phenolic acids. Specifically, SmCSN5 alone, when expressed transiently in tobacco and rice protoplasts, was localized to the cytoplasm, cell membrane, and nucleus, whereas when coexpressed with SmMYB36, it was detected only in the nucleus. Additionally, the degradation of SmMYB361-153 by ubiquitination was lowered after truncation of the self-activating structural domain of SmMYB36154-160. Collectively, these results suggest that SmCSN5 affected the transcriptional activation of SmMYB36 and stabilized SmMYB36, providing insights into the SmMYB36-based regulation of the accumulation of tanshinone and phenolic acid at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
- College of Tobacco Science, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China
| | - Xiujuan Wang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jie Wang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Yan Su
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Yuanyi Guo
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jie Yang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, No. 26, Hexing Road, Xiangfang District, Harbin 150040, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| |
Collapse
|
5
|
Liu RX, Li SS, Yue QY, Li HL, Lu J, Li WC, Wang YN, Liu JX, Guo XL, Wu X, Lv YX, Wang XF, You CX. MdHMGB15-MdXERICO-MdNRP module mediates salt tolerance of apple by regulating the expression of salt stress-related genes. J Adv Res 2025:S2090-1232(25)00201-2. [PMID: 40139525 DOI: 10.1016/j.jare.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Soil salinity is an important limiting factor for plant growth. As a RING-type E3 ubiquitin ligase, MdXERICO is highly responsive to salt stress and can enhance the salt tolerance of plants. However, the molecular mechanism for the response of MdXERICO to salt stress remains unclear. OBJECTIVES This study aims to dissect the molecular mechanisms for MdXERICO to regulate plant response to salt stress. METHODS Transcriptome data were compared to obtain the salt stress-induced gene MdXERICO. Transgenic apple seedlings, apple calli, Arabidopsis, and tomato material were obtained using Agrobacterium-mediated transformation assays. Semiendogenous co-immunoprecipitation analysis, yeast two-hybrid, pull-down and dual-luciferase reporter system were used to detect the protein-protein interactions. Electrophoretic mobility shift assay, yeast one-hybrids, dual luciferase and Gus staining assay were employed to verify the protein-DNA interactions. RESULTS The results revealed that MdXERICO interacted with MdNRP and improved salt tolerance of apple by ubiquitinating and degrading MdNRP via the 26S proteasome pathway. Moreover, the HMG box-containing transcription factor MdHMGB15 interacted with the MdXERICO promoter, thereby activating its expression and enhancing the salt tolerance of apple. CONCLUSION This study explores the apple's tolerance to salt stress through the MdHMGB15-MdXERICO-MdNRP module, and provides potential targets for engineering salt-tolerant varieties.
Collapse
Affiliation(s)
- Ran-Xin Liu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Shan-Shan Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Qian-Yu Yue
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Jie Lu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Wan-Cong Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Yue-Ning Wang
- College of Horticulture Science, Gansu Agricultural University, Lanzhou 730070 Gansu, China
| | - Jia-Xing Liu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xin-Long Guo
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xiang Wu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Ying-Xue Lv
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China.
| | - Chun-Xiang You
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China.
| |
Collapse
|
6
|
Guo L, Hao Y, Tang Y, Wu M, Zhai R, Yang C, Xu L, Wang Z. PKS1 involved in anthocyanin accumulation in red-skinned pear fruit. PLANT CELL REPORTS 2025; 44:58. [PMID: 39961867 DOI: 10.1007/s00299-025-03444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/27/2025] [Indexed: 05/09/2025]
Abstract
KEY MESSAGE PcPKS1 can prevent PcCSN5a from acting as an inhibitor of anthocyanin synthesis by binding to PcCSN5a, ultimately leading the accumulation of anthocyanins. Light is a crucial environmental factor that regulates anthocyanin accumulation in plants. However, the molecular mechanisms by which light signals influence anthocyanin accumulation in fruits have not yet been fully elucidated. We identified the differentially expressed gene Pyrus communis PHYTOCHROME KINASE SUBSTRATE 1 (PcPKS1), which is associated with anthocyanin accumulation in plants, in a previous study. Through measurements of the expression of PcPKS1 in 'Starkrimson' and 'Red Bartlett' pear fruit at various developmental stages and in different pear varieties, quantitative and transient expression experiments conducted on red and green skin tissues confirmed the relationship between PcPKS1 and anthocyanin accumulation. Pyrus communis COP9 SIGNALOSOME COMPLEX SUBUNIT 5A (PcCSN5a) protein, which interacts with PcPKS1, was identified from a yeast library screening. The interaction between the two proteins was validated through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split-luciferase (Split-LUC) experiments. Subcellular localization and co-localization experiments revealed that PcPKS1 was localized to the cell membrane, whereas PcCSN5a was localized to the cell membrane and nucleus, with PcPKS1 and PcCSN5a co-localized on the cell membrane. Transient expression in strawberry fruit indicated that PcPKS1 positively regulated anthocyanin accumulation, whereas PcCSN5a negatively regulated anthocyanin accumulation and diminished the capacity of PcPKS1 to promote anthocyanin accumulation. This study provides novel insights into the molecular mechanisms underlying light-regulated anthocyanin accumulation in red-skinned pear fruit.
Collapse
Affiliation(s)
- Lei Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuting Hao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Ying Tang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mengjia Wu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
7
|
Li S, Ou C, Liu X, Wang F, Zhang Y, Qi L, Jiang S, Li H. Plant U-box E3 ligase PpPUB59 regulates anthocyanin accumulation by ubiquitinating PpBBX24 in 'Zaosu' pear and its red bud mutation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109354. [PMID: 39615190 DOI: 10.1016/j.plaphy.2024.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025]
Abstract
Ubiquitination is the specific modification of target proteins in cells by ubiquitin molecules, which is under the action of a series of special enzymes such as ubiquitin-activating enzymes, binding, and ligase enzymes. Ubiquitination plays an essential role in anthocyanin accumulation in plants. There are few studies on the coloring of pear peel by ubiquitin ligase E3. In this study, an E3 ubiquitin ligase protein PpPUB59 with seven WD40 repeats was cloned. And the function of PpPUB59 on the ubiquitination and protein stability of PpBBX24 and Ppbbx24-del, and the possible action mechanism in the anthocyanin accumulation of 'Red Zaosu' was studied. Our results showed that the WD40 repeats were verified to be the key domain interacting with the VP domain of BBX protein. PpPUB59 could degrade PpBBX24 in vitro by interacting with the VP domain but could not degrade the mutant PpBBX24-del without the VP domain. Dual luciferase assay showed that Ppbbx24-del could activate the PpCHS promoter, while PpPUB59 did not interfere with this activation; PpBBX24 could not activate the promotor of PpCHS but could suppress the activation of PpHY5; when the PpPUB59 was co-expressed with PpBBX24 and PpHY5, the activation roles of PpHY5 in the promotor of PpCHS was not recovered. BiFC and yeast two-hybrid experiments showed that PpPUB59 could also interact with PpHY5, which may make it ubiquitinated and degraded by 26S proteasome. In conclusion, PpPUB59 played an essential role in pear anthocyanin accumulation by ubiquitinating the associated transcription factors. These findings clarified the mutant mechanism of the 'Red Zaosu' pear at the post-translational modification level and enriched the regulation theory of the pear anthocyanin accumulation.
Collapse
Affiliation(s)
- Shuran Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Chunqing Ou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Xiaofeng Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Fei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Yanjie Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Liyong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Shuling Jiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Germplasm Resources Utilization, Ministry of Agriculture and Rural Affair, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China.
| | - He Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
8
|
Wang TT, Song X, Zhang M, Fan YJ, Ren J, Duan YY, Guan SP, Luo X, Yang WH, Cao HX, Wu XM, Guo WW, Xie KD. CsCPC, an R3-MYB transcription factor, acts as a negative regulator of citric acid accumulation in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17189. [PMID: 39673730 DOI: 10.1111/tpj.17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
The citric acid accumulation during fruit ripening determines the quality of fleshy fruits. However, the molecular mechanism underlying citric acid accumulation is not clearly understood yet in citrus due to the scarcity of paired germplasm that exhibits significant difference in organic acid accumulation. Two citrus triploid hybrids with distinct citric acid content in their mature fruits were herein identified from a previously conducted interploidy cross in our group, providing an ideal paired material for studying acid accumulation in citrus. Through a comparative transcriptome analysis of the pulps of the above two triploid hybrids, an R3-MYB transcription factor, CAPRICE (CsCPC), was identified to be a regulator of citric acid accumulation in citrus fruits. Through transgenic experiments involving overexpression (in callus and kumquat fruits) and RNAi (in lemon leaves), we demonstrated that CsCPC suppresses citric acid accumulation by negatively regulating the expression of CsPH1 and CsPH5. Moreover, CsCPC competed with an R2R3-MYB CsPH4 for binding to ANTHOCYANIN1 (CsAN1) and thus disturbed the activation of CsPH1 and CsPH5 that encode vacuolar P-ATPase, which eventually led to a decrease in citric acid content. CsPH4 activated the expression of CsCPC and thus formed an activator-repressor feedback loop, which ultimately inhibited citric acid accumulation in citrus fruit. In summary, this study reveals a new regulatory mechanism of CsCPC-mediated inhibition of citric acid accumulation in citrus fruits, which would support the improvement of citrus fruit quality.
Collapse
Affiliation(s)
- Ting-Ting Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miao Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan-Jie Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ren
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao-Yuan Duan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Ping Guan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Hui Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui-Xiang Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Tan C, Yang J, Xue X, Wei J, Li H, Li Z, Duan Y. MsMYB62-like as a negative regulator of anthocyanin biosynthesis in Malus spectabilis. PLANT SIGNALING & BEHAVIOR 2024; 19:2318509. [PMID: 38375800 PMCID: PMC10880495 DOI: 10.1080/15592324.2024.2318509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Crabapple is a valuable tree species in gardens due to its captivating array of flower and leaf colors, rendering it a favored choice in landscaping. The economic and ornamental values of Malus crabapple are closely associated with the biosynthesis of anthocyanin, a pigment responsible for its vibrant hues. The intricate regulation of anthocyanin biosynthesis involves the concerted activity of various genes. However, the specific mechanism governing this process in crabapple warrants in-depth exploration. In this study, we explored the inhibitory role of MsMYB62-like in anthocyanin biosynthesis. We identified MsDFR and MsANS as two downstream target genes of MsMYB62-like. These genes encode enzymes integral to the anthocyanin biosynthetic pathway. The findings demonstrate that MsMYB62-like directly binds to the promoters of MsDFR and MsANS, resulting in the downregulation of their expression levels. Additionally, our observations indicate that the plant hormone cytokinins exert a suppressive effect on the expression levels of MsMYB62-like, while concurrently upregulating MsDFR and MsANS. This study reveals that the MsMYB62-like-MsDFR/MsANS module plays an important role in governing anthocyanin levels in Malus crabapple. Notably, the regulatory interplay is modulated by the plant hormone cytokinins.
Collapse
Affiliation(s)
- Cuixia Tan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyi Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingyue Xue
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, China
| | - Zenglin Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Duan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Zhao T, Huang C, Li N, Ge Y, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. PLANT PHYSIOLOGY 2024; 195:2891-2910. [PMID: 38688011 DOI: 10.1093/plphys/kiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grapes (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grapes leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yaqi Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Liu XJ, Liu X, Zhao Q, Dong YH, Liu Q, Xue Y, Yao YX, You CX, Kang H, Wang XF. Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple. HORTICULTURE RESEARCH 2024; 11:uhae081. [PMID: 38766530 PMCID: PMC11101318 DOI: 10.1093/hr/uhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Institute of Forestry and Pomology, Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Qiang Zhao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Hua Dong
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuan Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu-Xin Yao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
12
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
13
|
Zhang X, Wu Q, Lan L, Peng D, Guan H, Luo K, Bao M, Bendahmane M, Fu X, Wu Z. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. MOLECULAR HORTICULTURE 2024; 4:14. [PMID: 38622744 PMCID: PMC11020927 DOI: 10.1186/s43897-024-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.
Collapse
Affiliation(s)
- Xiaoni Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Huilin Guan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratoire Reproduction Et Development Des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, 520074, Lyon, France.
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| |
Collapse
|
14
|
Wei W, Luo Q, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. E3 ubiquitin ligase MaRZF1 modulates high temperature-induced green ripening of banana by degrading MaSGR1. PLANT, CELL & ENVIRONMENT 2024; 47:1128-1140. [PMID: 38093692 DOI: 10.1111/pce.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/29/2023] [Indexed: 03/05/2024]
Abstract
High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Huang L, Lin B, Hao P, Yi K, Li X, Hua S. Multi-Omics Analysis Reveals That Anthocyanin Degradation and Phytohormone Changes Regulate Red Color Fading in Rapeseed ( Brassica napus L.) Petals. Int J Mol Sci 2024; 25:2577. [PMID: 38473825 DOI: 10.3390/ijms25052577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flower color is an important trait for the ornamental value of colored rapeseed (Brassica napus L.), as the plant is becoming more popular. However, the color fading of red petals of rapeseed is a problem for its utilization. Unfortunately, the mechanism for the process of color fading in rapeseed is unknown. In the current study, a red flower line, Zhehuhong, was used as plant material to analyze the alterations in its morphological and physiological characteristics, including pigment and phytohormone content, 2 d before flowering (T1), at flowering (T2), and 2 d after flowering (T3). Further, metabolomics and transcriptomics analyses were also performed to reveal the molecular regulation of petal fading. The results show that epidermal cells changed from spherical and tightly arranged to totally collapsed from T1 to T3, according to both paraffin section and scanning electron microscope observation. The pH value and all pigment content except flavonoids decreased significantly during petal fading. The anthocyanin content was reduced by 60.3% at T3 compared to T1. The content of three phytohormones, 1-aminocyclopropanecarboxylic acid, melatonin, and salicylic acid, increased significantly by 2.2, 1.1, and 30.3 times, respectively, from T1 to T3. However, auxin, abscisic acid, and jasmonic acid content decreased from T1 to T3. The result of metabolomics analysis shows that the content of six detected anthocyanin components (cyanidin, peonidin, pelargonidin, delphinidin, petunidin, and malvidin) and their derivatives mainly exhibited a decreasing trend, which was in accordance with the trend of decreasing anthocyanin. Transcriptomics analysis showed downregulation of genes involved in flavonol, flavonoid, and anthocyanin biosynthesis. Furthermore, genes regulating anthocyanin biosynthesis were preferentially expressed at early stages, indicating that the degradation of anthocyanin is the main issue during color fading. The corresponding gene-encoding phytohormone biosynthesis and signaling, JASMONATE-ZIM-DOMAIN PROTEIN, was deactivated to repress anthocyanin biosynthesis, resulting in fading petal color. The results clearly suggest that anthocyanin degradation and phytohormone regulation play essential roles in petal color fading in rapeseed, which is a useful insight for the breeding of colored rapeseed.
Collapse
Affiliation(s)
- Lan Huang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
16
|
Bazakos C, Alexiou KG, Ramos-Onsins S, Koubouris G, Tourvas N, Xanthopoulou A, Mellidou I, Moysiadis T, Vourlaki IT, Metzidakis I, Sergentani C, Manolikaki I, Michailidis M, Pistikoudi A, Polidoros A, Kostelenos G, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome scanning of a Mediterranean basin hotspot collection provides new insights into olive tree biodiversity and biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:303-319. [PMID: 37164361 DOI: 10.1111/tpj.16270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.
Collapse
Affiliation(s)
- Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Konstantinos G Alexiou
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Sebastián Ramos-Onsins
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Georgios Koubouris
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Nikolaos Tourvas
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia, 2417, Cyprus
| | - Ioanna-Theoni Vourlaki
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Ioannis Metzidakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Chrysi Sergentani
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Ioanna Manolikaki
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, 73134, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001, Thessaloniki, Greece
| | - Adamantia Pistikoudi
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Filippos Aravanopoulos
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thermi, 57001, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
- Joint Laboratory of Horticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
17
|
Luo Q, Wei W, Yang YY, Wu CJ, Chen JY, Lu WJ, Kuang JF, Shan W. E3 ligase MaNIP1 degradation of NON-YELLOW COLORING1 at high temperature inhibits banana degreening. PLANT PHYSIOLOGY 2023; 192:1969-1981. [PMID: 36794407 PMCID: PMC10315274 DOI: 10.1093/plphys/kiad096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Banana (Musa acuminata) fruit ripening under high temperatures (>24 °C) undergoes green ripening due to failure of chlorophyll degradation, which greatly reduces marketability. However, the mechanism underlying high temperature-repressed chlorophyll catabolism in banana fruit is not yet well understood. Here, using quantitative proteomic analysis, 375 differentially expressed proteins were identified in normal yellow and green ripening in banana. Among these, one of the key enzymes involved in chlorophyll degradation, NON-YELLOW COLORING 1 (MaNYC1), exhibited reduced protein levels when banana fruit ripened under high temperature. Transient overexpression of MaNYC1 in banana peels resulted in chlorophyll degradation under high temperature, which weakens the green ripening phenotype. Importantly, high temperature induced MaNYC1 protein degradation via the proteasome pathway. A banana RING E3 ligase, NYC1-interacting protein 1 (MaNIP1), was found to interact with and ubiquitinate MaNYC1, leading to its proteasomal degradation. Furthermore, transient overexpression of MaNIP1 attenuated MaNYC1-induced chlorophyll degradation in banana fruits, indicating that MaNIP1 negatively regulates chlorophyll catabolism by affecting MaNYC1 degradation. Taken together, the findings establish a post-translational regulatory module of MaNIP1-MaNYC1 that mediates high temperature-induced green ripening in bananas.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Jezek M, Allan AC, Jones JJ, Geilfus CM. Why do plants blush when they are hungry? THE NEW PHYTOLOGIST 2023; 239:494-505. [PMID: 36810736 DOI: 10.1111/nph.18833] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies. A range of ecophysiological functions have been attributed to anthocyanins. We discuss the proposed functions and signalling pathways that elicit anthocyanin synthesis in nutrient-stressed leaves. Knowledge from the fields of genetics, molecular biology, ecophysiology and plant nutrition is combined to deduce how and why anthocyanins accumulate under nutritional stress. Future research to fully understand the mechanisms and nuances of foliar anthocyanin accumulation in nutrient-stressed crops could be utilized to allow these leaf pigments to act as bioindicators for demand-oriented application of fertilizers. This would benefit the environment, being timely due to the increasing impact of the climate crisis on crop performance.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jeffrey J Jones
- Department of Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| |
Collapse
|
19
|
Yang J, Chen Y, Xiao Z, Shen H, Li Y, Wang Y. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1008829. [PMID: 36147236 PMCID: PMC9485867 DOI: 10.3389/fpls.2022.1008829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that confer red, blue, and purple colorations in plants and are highly desired by consumers for their visual appearance and nutritional quality. In the last two decades, the anthocyanin biosynthetic pathway and transcriptional regulation of anthocyanin biosynthetic genes (ABGs) have been well characterized in many plants. From numerous studies on model plants and horticultural crops, many signaling regulators have been found to control anthocyanin accumulation via regulation of anthocyanin-promoting R2R3-MYB transcription factors (so-called R2R3-MYB activators). The regulatory mechanism of R2R3-MYB activators is mediated by multiple environmental factors (e.g., light, temperature) and internal signals (e.g., sugar, ethylene, and JA) in complicated interactions at multiple levels. Here, we summarize the transcriptional control of R2R3-MYB activators as a result of natural variations in the promoter of their encoding genes, upstream transcription factors and epigenetics, and posttranslational modifications of R2R3-MYB that determine color variations of horticultural plants. In addition, we focus on progress in elucidating the integrated regulatory network of anthocyanin biosynthesis mediated by R2R3-MYB activators in response to multiple signals. We also highlight a few gene cascade modules involved in the regulation of anthocyanin-related R2R3-MYB to provide insights into anthocyanin production in horticultural plants.
Collapse
Affiliation(s)
- Jianfei Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Yuhua Li,
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Yu Wang,
| |
Collapse
|